Lie group-theoretic approach to the holomorphic equivalence problem and related various problems in several complex variables
全纯等价问题的李群理论方法以及多个复变量中的相关各种问题
基本信息
- 批准号:14540149
- 负责人:
- 金额:$ 2.3万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2002
- 资助国家:日本
- 起止时间:2002 至 2005
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this research, centering our study in the holomorphic equivalence problem, holomorphic automorphism groups, Reinhardt domains, and torus actions, we have obtained the following results.1.Recently, an answer was given to the holomorphic equivalence problem for certain unbounded Reinhardt domains called elementary Reinhardt domains, whose method uses pluricomplex Green functions. We have given another approach to this problem that uses the theory of holomorphic automorphism groups. Also, related to the study of Reinhardt domains, we have developed the study of a group-theoretic characterization of the space X obtained by omitting the coordinate hyperplanes from the complex Euclidean space, and succeeded in characterizing X in the category of manifolds that are not necessarily Stein. As a by-product of this study, we have obtained a result on the standardization of rank n compact Lie group actions on n-dimensional complex manifolds, and moreover, as an application, we have succeeded in … More characterizing the space given as the direct product of the ball and the complex Euclidean space by its holomorphic automorphism group as well.2.As part of the study of the holomorphic equivalence problem and holomorphic automorphism groups, we have made one formulation to generalize the Riemann mapping theorem to the higher-dimensional case by utilizing holomorphic automorphism groups. According to this formulation, we have characterized the direct of balls by its holomorphic automorphism group.3.As part of the study of torus actions, we have studied the Bando-Calabi-Futaki character. In particular, we have made a detailed ovservation of the connection between the stability of polarized algebraic varieties and the existence of Kaehler metrics of constant scalar curvature (what is called Hitchin-Kobayashi correspondence for manifolds). Also, related to the study of one-dimensional torus actions on two-dimensional complex manifolds, we have obtained a new knowledge of the holomorphic automorphism groups of two-dimensional quasi-circular domains. Less
在这项研究中,将我们的研究集中在全体形态当量问题,霍尔态自动构成群体,莱因哈特域和托鲁斯的行动中,我们获得了以下结果。1。creply.1. creply,对于某些无绑定的Reinhardt域而言,给出了一个被称为Reinhardt reinhardtary Reinhardt domains domains的固定型的答案。我们已经为这个问题提供了另一种方法,该方法使用了尸体形态自动形态群体的理论。同样,与Reinhardt领域的研究相关,我们通过省略来自复杂欧几里得空间的坐标超平面而获得了对空间X的群体理论表征的研究,并成功地在不需必要的Stein的歧管类别中表征X。作为这项研究的副产品,我们已经获得了等级n紧凑型谎言组对n维复杂流形的标准化的结果自动形态群体,我们制作了一个公式,通过利用霍明型汽车组,将riemann映射到更高尺寸的情况下。根据这个公式,我们通过其圆形自动形态组的直接表征了球的直接。3。在《圆环动作研究》的一部分中,我们研究了Bando-Calabi-Futaki特征。特别是,我们对极化代数变化的稳定性与恒定标量曲率的Kaehler指标的存在(所谓的Hitchin-Kobayashi对应关系)之间的连接进行了详细的卵形化。同样,与研究一维圆环作用对二维复杂歧管的研究有关,我们已经获得了有关二维准圆形域的全态自动构成群体的新知识。较少的
项目成果
期刊论文数量(31)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
K.Kenmotsu: "Surfaces of revolution with periodic mean curvature"Osaka J.Math.. 40. 687-696 (2003)
K.Kenmotsu:“具有周期平均曲率的旋转表面”Osaka J.Math.. 40. 687-696 (2003)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
On the CR form of complex Lie group action
论复杂李群作用的CR形式
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:K.Tanigaki;T.Shimizu;K.M.Itoh;J.Teraoka;Y.Moritomo;S.Yamanaka;Shigeru Takeuchi
- 通讯作者:Shigeru Takeuchi
K.Kenmotsu: "Surfaces of revolution with periodic mean curvature and Bezier curves"Differential Geometry and Related Topics, C. Gu et al.(eds), 2003, World Scientific(論文集). 135-146 (2003)
K.Kenmotsu:“具有周期平均曲率和贝塞尔曲线的旋转表面”微分几何和相关主题,C. Gu 等人(编辑),2003 年,世界科学出版社。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Y.Nakagawa: "The Bando-Calabi-Futaki character and its lifting to a group character"Math. Ann.. 325. 31-53 (2003)
Y.Nakakawa:“Bando-Calabi-Futaki 角色及其提升为群体角色”数学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A group-theoretic characterization of the space obtained by omitting the coordinate hyperplanes from the complex Eucidean space
通过从复欧几里得空间中省略坐标超平面而获得的空间的群论表征
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:A.Kodama;S.Shimizu;A.Kodama
- 通讯作者:A.Kodama
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHIMIZU Satoru其他文献
SHIMIZU Satoru的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHIMIZU Satoru', 18)}}的其他基金
Study of holomorphic automorphism groups and its application to complex analysis
全纯自同构群的研究及其在复分析中的应用
- 批准号:
22540167 - 财政年份:2010
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of special domains and its application to complex geometry
特殊域研究及其在复杂几何中的应用
- 批准号:
18540154 - 财政年份:2006
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of special domains
特殊领域研究
- 批准号:
11640148 - 财政年份:1999
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of group actions on complex manifolds
复流形上的群作用研究
- 批准号:
09640145 - 财政年份:1997
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Studies on the mechanism of sperm-egg interaction
精卵相互作用机制研究
- 批准号:
59540475 - 财政年份:1984
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
A characterization of the complex Euclidean space by its holomorphic automorphism group
复欧几里得空间的全纯自同构群的表征
- 批准号:
14540165 - 财政年份:2002
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Geometric researches in complex analysis
复杂分析中的几何研究
- 批准号:
12304007 - 财政年份:2000
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Study of special domains
特殊领域研究
- 批准号:
11640148 - 财政年份:1999
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Study of group actions on complex manifolds
复流形上的群作用研究
- 批准号:
09640145 - 财政年份:1997
- 资助金额:
$ 2.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)