Lie group-theoretic approach to the holomorphic equivalence problem and related various problems in several complex variables

全纯等价问题的李群理论方法以及多个复变量中的相关各种问题

基本信息

  • 批准号:
    14540149
  • 负责人:
  • 金额:
    $ 2.3万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2002
  • 资助国家:
    日本
  • 起止时间:
    2002 至 2005
  • 项目状态:
    已结题

项目摘要

In this research, centering our study in the holomorphic equivalence problem, holomorphic automorphism groups, Reinhardt domains, and torus actions, we have obtained the following results.1.Recently, an answer was given to the holomorphic equivalence problem for certain unbounded Reinhardt domains called elementary Reinhardt domains, whose method uses pluricomplex Green functions. We have given another approach to this problem that uses the theory of holomorphic automorphism groups. Also, related to the study of Reinhardt domains, we have developed the study of a group-theoretic characterization of the space X obtained by omitting the coordinate hyperplanes from the complex Euclidean space, and succeeded in characterizing X in the category of manifolds that are not necessarily Stein. As a by-product of this study, we have obtained a result on the standardization of rank n compact Lie group actions on n-dimensional complex manifolds, and moreover, as an application, we have succeeded in … More characterizing the space given as the direct product of the ball and the complex Euclidean space by its holomorphic automorphism group as well.2.As part of the study of the holomorphic equivalence problem and holomorphic automorphism groups, we have made one formulation to generalize the Riemann mapping theorem to the higher-dimensional case by utilizing holomorphic automorphism groups. According to this formulation, we have characterized the direct of balls by its holomorphic automorphism group.3.As part of the study of torus actions, we have studied the Bando-Calabi-Futaki character. In particular, we have made a detailed ovservation of the connection between the stability of polarized algebraic varieties and the existence of Kaehler metrics of constant scalar curvature (what is called Hitchin-Kobayashi correspondence for manifolds). Also, related to the study of one-dimensional torus actions on two-dimensional complex manifolds, we have obtained a new knowledge of the holomorphic automorphism groups of two-dimensional quasi-circular domains. Less
本文主要研究了全纯等价问题、全纯自同构群、Reinhardt域和环面作用,得到了如下结果:1.最近,利用复绿色函数,给出了一类无界Reinhardt域(称为初等Reinhardt域)的全纯等价问题的一个解答.我们已经给出了另一种方法来解决这个问题,使用全纯自同构群的理论。此外,与莱因哈特域的研究有关,我们已经开展了对空间X的群论特征的研究,该特征是通过从复欧氏空间中省略坐标超平面而获得的,并且成功地在流形范畴中表征了X,而流形不一定是Stein。作为这一研究的副产品,我们得到了n维复流形上的秩n紧李群作用的标准化结果,而且,作为应用,我们成功地 ...更多信息 作为全纯等价问题和全纯自同构群研究的一部分,我们利用全纯自同构群给出了一个公式,将Riemann映射定理推广到高维情形.在此基础上,我们利用球的全纯自同构群刻画了球的直。3.作为研究环面作用的一部分,我们研究了Bando-Calabi-Futaki特征标。特别地,我们已经详细地讨论了极化代数簇的稳定性与常数量曲率的Kaehler度量的存在性之间的联系(流形上的Hitchin-Kobayashi对应)。同时,与二维复流形上的一维环面作用的研究相关,我们得到了二维拟圆域的全纯自同构群的一个新的认识。少

项目成果

期刊论文数量(31)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
K.Kenmotsu: "Surfaces of revolution with periodic mean curvature and Bezier curves"Differential Geometry and Related Topics, C. Gu et al.(eds), 2003, World Scientific(論文集). 135-146 (2003)
K.Kenmotsu:“具有周期平均曲率和贝塞尔曲线的旋转表面”微分几何和相关主题,C. Gu 等人(编辑),2003 年,世界科学出版社。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Y.Nakagawa: "The Bando-Calabi-Futaki character and its lifting to a group character"Math. Ann.. 325. 31-53 (2003)
Y.Nakakawa:“Bando-Calabi-Futaki 角色及其提升为群体角色”数学。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
A group-theoretic characterization of the space obtained by omitting the coordinate hyperplanes from the complex Eucidean space
通过从复欧几里得空间中省略坐标超平面而获得的空间的群论表征
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A.Kodama;S.Shimizu;A.Kodama
  • 通讯作者:
    A.Kodama
K.Kenmotsu: "Surfaces of revolution with periodic mean curvature"Osaka J. Math.. (発表予定). (2003)
K.Kenmotsu:“具有周期平均曲率的旋转表面”Osaka J. Math..(待提交)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Erratum : The Bando-Calabi-Futaki character as an obstruction to semistability
勘误:Bando-Calabi-Futaki 特征作为半稳定性的障碍
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A.Kodama;S.Shimizu;A.Kodama;T.Mabuchi
  • 通讯作者:
    T.Mabuchi
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

SHIMIZU Satoru其他文献

SHIMIZU Satoru的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('SHIMIZU Satoru', 18)}}的其他基金

Study of holomorphic automorphism groups and its application to complex analysis
全纯自同构群的研究及其在复分析中的应用
  • 批准号:
    22540167
  • 财政年份:
    2010
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of special domains and its application to complex geometry
特殊域研究及其在复杂几何中的应用
  • 批准号:
    18540154
  • 财政年份:
    2006
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of special domains
特殊领域研究
  • 批准号:
    11640148
  • 财政年份:
    1999
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of group actions on complex manifolds
复流形上的群作用研究
  • 批准号:
    09640145
  • 财政年份:
    1997
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies on the mechanism of sperm-egg interaction
精卵相互作用机制研究
  • 批准号:
    59540475
  • 财政年份:
    1984
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

A characterization of the complex Euclidean space by its holomorphic automorphism group
复欧几里得空间的全纯自同构群的表征
  • 批准号:
    14540165
  • 财政年份:
    2002
  • 资助金额:
    $ 2.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了