Tracial rank of C^*-crossed products of AF algebras by discrete groups
离散群 AF 代数的 C^* 交叉积的追踪排序
基本信息
- 批准号:14540217
- 负责人:
- 金额:$ 1.86万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2002
- 资助国家:日本
- 起止时间:2002 至 2003
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1. We define the tracial Rokhlin property for an action on a simple unital C^*-algebra in the joint research with N.C.Phillips, and study its basic properties. This properly is weaker than the Rokhlin property by Kishimoto. When A is a simple unital C^*-algebra of tracial rank zero and α∈Aut(A) has the tracial Rokhlin property, then the crossed product algebra C^*-(Z, A, α) is simple, and has real rank zero, stable rank one, and the Fundamental Comparison Property in the sense of Blackadar. It is still opened if C^*(Z, A, α) has tracial rank zero.2. We define the cyclic Rokhlin property for an action on a unital C^*-algebra in the joint work with H Lin, which is stronger than the tracial Rokhlin property. We proved that when A is a simple unital C^*-algebra of tracial rank zero and α∈Aut(A) has the cyclic tracial Rokhlin property, then the algebra C^*(Z, A, α) is simple until C^*-algebra of tracial rank zero. Moreover if A is separable with the UCT, then A is a AH algebra. We also proved that if an approximately inner a∈Aut(A) has tracial Rokhlin property, then α has the cyclic tracial Rokhlin property.3. Let G be a finite group and α an action from G to Aut(UHF). We proved in the joint work with T. Teruya that the crossed product algebra C^*(G, UHF, α) has topological rank more than or equal to 2. It is still opened if C^*(G, A, α) has stable rank 1 for any simple AF algebra A and any action a from G to Aut(A).
1.在与N.C.菲利普斯的合作研究中,我们定义了单单位C^*-代数上作用的迹Rokhlin性质,并研究了它的基本性质.这个性质比Kishimoto的Rokhlin性质弱。当A是迹秩为零的单单位C^*-代数且α∈Aut(A)具有迹Rokhlin性质时,则交叉积代数C^*-(Z,A,α)是单的,且具有真实的秩零、稳定秩一和Blackadar意义下的基本比较性质.如果C^*(Z,A,α)的迹秩为零,则它仍然是开的。在与H Lin的合作中,我们定义了单位C^*-代数上作用的循环Rokhlin性质,它比迹Rokhlin性质更强。证明了当A是迹秩为零的单单位C^*-代数且α∈Aut(A)具有循环迹Rokhlin性质时,代数C^*(Z,A,α)是单的直到迹秩为零的C^*-代数.此外,如果A可与UCT分离,则A是AH代数。证明了若a∈Aut(A)具有迹Rokhlin性质,则α具有循环迹Rokhlin性质.设G是有限群,α是G到Aut(UHF)的作用.我们在与T. Teruya证明了交叉积代数C^*(G,UHF,α)的拓扑秩大于或等于2.若对任意单AF代数A和任意从G到Aut(A)的作用a,C^*(G,A,α)具有稳定秩1,则该定理仍是开的.
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
H.Osaka: "Noncommutative dimension for C^*.algebras"The Interdisplinary Information Sciences. 9(2003). 209-220 (2003)
H.Osaka:“C^*.algebras 的非交换维数”跨学科信息科学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Osaka: "Noncommutativa dimension for C^*-algebras"The Interdisplinary Information Sciences. 9. 209-220 (2003)
H.Osaka:“C^*-代数的非交换维数”跨学科信息科学。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Lin, H.Osaka: "The Rokhlin property and the tracial topological rank"Journal of Functional Analysis. (To appear).
H.Lin,H.Osaka:“Rokhlin 性质和轨迹拓扑等级”泛函分析杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Hiroyuki Osaka: "Tracially quasidiagonal extensions and topological stable rank"Illinois Journal of Mathematics. (掲載予定).
Hiroyuki Osaka:“Tracically 拟对角扩展和拓扑稳定秩”,《伊利诺斯数学杂志》(待出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
H.Osaka: "Tracially topological quasidiagonal extensions and topological stable rank"Illinois Journal of Mathematics. 47. 921-937 (2003)
H.Osaka:“轨迹拓扑拟对角扩张和拓扑稳定秩”伊利诺伊数学杂志。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
OSAKA Hiryuki其他文献
OSAKA Hiryuki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
CAREER: Gauge-theoretic Floer invariants, C* algebras, and applications of analysis to topology
职业:规范理论 Floer 不变量、C* 代数以及拓扑分析应用
- 批准号:
2340465 - 财政年份:2024
- 资助金额:
$ 1.86万 - 项目类别:
Continuing Grant
Conference: Young Mathematicians in C*-Algebras 2024
会议:C*-代数中的青年数学家 2024
- 批准号:
2404675 - 财政年份:2024
- 资助金额:
$ 1.86万 - 项目类别:
Standard Grant
NSF-BSF: C*-algebras and Dynamics Beyond the Elliott Program
NSF-BSF:艾略特纲领之外的 C* 代数和动力学
- 批准号:
2400332 - 财政年份:2024
- 资助金额:
$ 1.86万 - 项目类别:
Standard Grant
C*-algebras Associated to Minimal and Hyperbolic Dynamical Systems
与最小和双曲动力系统相关的 C* 代数
- 批准号:
2247424 - 财政年份:2023
- 资助金额:
$ 1.86万 - 项目类别:
Continuing Grant
Conference: Young Mathematicians in C*-Algebras 2023
会议:C*-代数中的青年数学家 2023
- 批准号:
2247448 - 财政年份:2023
- 资助金额:
$ 1.86万 - 项目类别:
Standard Grant
Classification of von Neumann Algebras: Connections and Applications to C*-algebras, Geometric Group Theory and Continuous Model Theory
冯诺依曼代数的分类:与 C* 代数、几何群论和连续模型理论的联系和应用
- 批准号:
2154637 - 财政年份:2022
- 资助金额:
$ 1.86万 - 项目类别:
Standard Grant
New directions in C*-algebras, Groupoids, and Inverse Semigroups
C* 代数、群形和逆半群的新方向
- 批准号:
RGPIN-2021-03834 - 财政年份:2022
- 资助金额:
$ 1.86万 - 项目类别:
Discovery Grants Program - Individual
C*-algebras of Groups and Quantum Groups: Rigidity and Structure Theory
群和量子群的 C* 代数:刚性和结构理论
- 批准号:
2155162 - 财政年份:2022
- 资助金额:
$ 1.86万 - 项目类别:
Standard Grant
Conference: Young Mathematicians in C*-Algebras 2022
会议:C*-代数中的青年数学家 2022
- 批准号:
2154557 - 财政年份:2022
- 资助金额:
$ 1.86万 - 项目类别:
Standard Grant
Logic and C*-algebras
逻辑和 C* 代数
- 批准号:
RGPIN-2017-05650 - 财政年份:2022
- 资助金额:
$ 1.86万 - 项目类别:
Discovery Grants Program - Individual














{{item.name}}会员




