C*-algebras of Groups and Quantum Groups: Rigidity and Structure Theory

群和量子群的 C* 代数:刚性和结构理论

基本信息

  • 批准号:
    2155162
  • 负责人:
  • 金额:
    $ 32.59万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

The theory of operator algebras was developed in the 1930s as the mathematical foundation of quantum mechanics. This theory is also a natural mathematical framework in which physical systems as they evolve in time (called dynamical systems) can be represented and studied; groups are the algebraic structures that represent the time in this picture. Groups also model symmetries of physical systems and mathematical structures, and since their formal introduction in the 19th century, their applications have expanded deep into almost every major area of mathematics. Representation theory of groups provides canonical ways to assign operator algebras to a given group, hence establishes a bridge between the two theories which allows one to import ideas and concepts from one theory to the other. The study of the connections between groups and their associated operator algebras has been a central part of operator algebra theory since the time of von Neumann, and it has had tremendous impact on both theories, as well as in several other related areas such as ergodic theory, dynamical systems, and representation theory. This project aims to make further progress in this direction by discovering new connections between structural properties of groups and their operator algebras. The project provides research training opportunities for graduate students. The first part of the project is aimed at several conjectures and problems related to new operator-algebraic rigidity phenomena for discrete groups in terms of their C*-algebras. This is based on a new approach to extending important classical results from ergodic theory of higher rank groups to the operator-algebraic setting. The main concept of interest is that of invariant subalgebras of C*-algebras generated by unitary representations, which are viewed as non-commutative generalizations of normal subgroups. The boundary theory of groups (in the sense of Furstenberg) plays a central role in the Principal Investigator’s strategies to approach the proposed problems. Furstenberg's boundary theory has been, in the past few decades, a major tool in ergodic theory of higher rank lattices and in proving their rigidity properties. More recently, it has also been used in operator-algebraic rigidity problems, resulting in significant progress in this area. The project aims to develop new techniques in utilizing boundary actions in order to prove the proposed rigidity results for invariant subalgebras of C*-algebras generated by unitary representations of discrete groups. Another part of this project concerns several open problems regarding simplicity and unique trace property of C*-algebras of discrete quantum groups; the goal is to further develop the boundary theory of quantum groups and apply them in these problems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
算符代数理论是在20世纪30年代发展起来的,作为量子力学的数学基础。这个理论也是一个自然的数学框架,在这个框架中,物理系统随着时间的推移而演化(称为动力系统)可以被表示和研究;群是表示这个图像中的时间的代数结构。群也是物理系统和数学结构的对称性的模型,自从它们在世纪被正式引入以来,它们的应用已经深入到数学的几乎每一个主要领域。群的表示论提供了将算子代数赋给给定群的规范方法,从而在两个理论之间建立了一座桥梁,允许一个理论将思想和概念导入另一个理论。自冯·诺依曼时代以来,研究群与其相关的算子代数之间的联系一直是算子代数理论的核心部分,它对这两个理论以及其他几个相关领域(如遍历理论、动力系统和表示论)产生了巨大的影响。该项目旨在通过发现群的结构性质与其算子代数之间的新联系,在这一方向上取得进一步的进展。该项目为研究生提供研究培训机会。该项目的第一部分旨在研究与离散群的C*-代数的新算子代数刚性现象相关的几个猜想和问题。这是基于一种新的方法来扩展重要的经典结果遍历理论的高阶群的运营商代数设置。有趣的主要概念是由酉表示生成的C*-代数的不变子代数,它们被视为正规子群的非交换推广。组的边界理论(在Furstenberg的意义上)在主要研究者的策略中起着核心作用,以解决所提出的问题。在过去的几十年里,Furstenberg的边界理论一直是高阶格的遍历理论和证明其刚性性质的主要工具。最近,它也被用于算子代数刚性问题,在这一领域取得了重大进展。该项目旨在开发利用边界作用的新技术,以证明由离散群的酉表示生成的C*-代数的不变子代数的刚性结果。该项目的另一部分是关于离散量子群的C*-代数的简单性和唯一迹性质的几个开放问题,目标是进一步发展量子群的边界理论并将其应用于这些问题。该奖项反映了NSF的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估而被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mehrdad Kalantar其他文献

On simplicity of intermediate $C^{\ast }$-algebras
论中级$C^{ast }$-代数的简单性
  • DOI:
    10.1017/etds.2019.34
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Tattwamasi Amrutam;Mehrdad Kalantar
  • 通讯作者:
    Mehrdad Kalantar
Real Structure in Operator Spaces, Injective Envelopes and G-spaces
算子空间、内射包络和 G 空间中的实数结构
  • DOI:
    10.1007/s00020-024-02766-7
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    D. Blecher;Arianna Cecco;Mehrdad Kalantar
  • 通讯作者:
    Mehrdad Kalantar
A limit theorem for discrete quantum groups
离散量子群的极限定理
  • DOI:
    10.1016/j.jfa.2013.05.014
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Mehrdad Kalantar
  • 通讯作者:
    Mehrdad Kalantar
A type I conjecture and boundary representations of hyperbolic groups
I型猜想和双曲群的边界表示
On harmonic non-commutative ^{}-operators on locally compact quantum groups
局部紧量子群上的调和非交换^{}-算子
  • DOI:
    10.1090/s0002-9939-2013-11763-6
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mehrdad Kalantar
  • 通讯作者:
    Mehrdad Kalantar

Mehrdad Kalantar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mehrdad Kalantar', 18)}}的其他基金

Collaborative Research: Conference: Brazos Analysis Seminar
合作研究:会议:Brazos 分析研讨会
  • 批准号:
    2400111
  • 财政年份:
    2024
  • 资助金额:
    $ 32.59万
  • 项目类别:
    Standard Grant
Boundary Actions and Applications in Operator Algebras
算子代数中的边界作用和应用
  • 批准号:
    1700259
  • 财政年份:
    2017
  • 资助金额:
    $ 32.59万
  • 项目类别:
    Standard Grant

相似海外基金

Quantum Groups, W-algebras, and Brauer-Kauffmann Categories
量子群、W 代数和布劳尔-考夫曼范畴
  • 批准号:
    2401351
  • 财政年份:
    2024
  • 资助金额:
    $ 32.59万
  • 项目类别:
    Standard Grant
Combinatorial Representation Theory of Quantum Groups and Coinvariant Algebras
量子群与协变代数的组合表示论
  • 批准号:
    2348843
  • 财政年份:
    2024
  • 资助金额:
    $ 32.59万
  • 项目类别:
    Standard Grant
Cluster Algebras, Quantum Groups, and Decorated Character Varieties
簇代数、量子群和修饰字符簇
  • 批准号:
    2200738
  • 财政年份:
    2022
  • 资助金额:
    $ 32.59万
  • 项目类别:
    Standard Grant
Banach algebras, operator spaces and their applications to locally compact quantum groups
Banach代数、算子空间及其在局部紧量子群中的应用
  • 批准号:
    RGPIN-2019-04579
  • 财政年份:
    2022
  • 资助金额:
    $ 32.59万
  • 项目类别:
    Discovery Grants Program - Individual
Banach algebras, operator spaces and their applications to locally compact quantum groups
Banach代数、算子空间及其在局部紧量子群中的应用
  • 批准号:
    RGPIN-2019-04579
  • 财政年份:
    2021
  • 资助金额:
    $ 32.59万
  • 项目类别:
    Discovery Grants Program - Individual
Banach algebras, operator spaces and their applications to locally compact quantum groups
Banach代数、算子空间及其在局部紧量子群中的应用
  • 批准号:
    RGPIN-2019-04579
  • 财政年份:
    2020
  • 资助金额:
    $ 32.59万
  • 项目类别:
    Discovery Grants Program - Individual
Operator Algebras, Groups, and Applications to Quantum Information
算子代数、群以及在量子信息中的应用
  • 批准号:
    1901290
  • 财政年份:
    2019
  • 资助金额:
    $ 32.59万
  • 项目类别:
    Standard Grant
Infinite Dimensional Lie algebras, Quantum Groups and their Applications
无限维李代数、量子群及其应用
  • 批准号:
    1902226
  • 财政年份:
    2019
  • 资助金额:
    $ 32.59万
  • 项目类别:
    Standard Grant
Representations of multiplier algebras associated to locally compact quantum groups
与局部紧量子群相关的乘子代数的表示
  • 批准号:
    503989-2017
  • 财政年份:
    2019
  • 资助金额:
    $ 32.59万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Banach algebras, operator spaces and their applications to locally compact quantum groups
Banach代数、算子空间及其在局部紧量子群中的应用
  • 批准号:
    RGPIN-2019-04579
  • 财政年份:
    2019
  • 资助金额:
    $ 32.59万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了