Topological and computational methods for chaos and global structure of dynamical systems

动力系统混沌和全局结构的拓扑和计算方法

基本信息

  • 批准号:
    14540219
  • 负责人:
  • 金额:
    $ 2.11万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2002
  • 资助国家:
    日本
  • 起止时间:
    2002 至 2004
  • 项目状态:
    已结题

项目摘要

The purpose of this project is to develop the topological methods like Comley Index in order to study the global structure and the bifurcations of dynamical systems given by differential equations and/or mappings, moreover to realize such methos as computer algorithm. We obtained the following results during 2002 and 2004.[A] Conley index theory for singularly perturbed vector fields and its applications----The principal idea is to use Conley index for the existence of certain solutions in singularly perturbed vector fields. A convenient formulation of such argument is given by Gedeon-Kokubu-Mischaikow-Oka-Reineck (1999), and using this, a variety of solutions described in terms of symbolic dynamics are obtained in an equations modeling fluid dynamics in a shallow container. The framework is then extended to the case of multi-dimensional slow manifold. As an application, an alternative proof for the existence of periodic traveling waves in some reaction-diffusion system studied by Gardner-Smoller (1983), and furthermore, a set of solutions described in terms of symbolic dynamics as above is also obtained there.[B] Study of holomorphic vector fields-Aiming at the extension of Poincare-Bendixson type theorem for codimension one holomorphic foliations, several results such as non-transversality of such foliations to the boundary sphere, are obtained.[C] Uniform hyperbolicity and non-maximal entropy locus of Henon Family-One of the results is the following. Henon mappings given by cubic polynomials at the parameter value (a, b)=(-1.35, 0.2) is not conjugate to any small perturbed mappings of 1-dimensiomal polynomial which is uniformly hyperbolic and expanding.[D] Braid type of the set of fixed points-An equivalence relation is introduced to the set of the fixed points using notion of the braid type for orientaion preserving homeomorphisms on discs with finite fiexed points. It is shown that the braid type of the fixed points determines the fixed point index completetly.
该项目的目的是开发像Comley指数这样的拓扑方法,以研究由微分方程和/或映射给出的动力系统的全局结构和分岔,并实现计算机算法等方法。我们在2002年和2004年取得了如下成果。[A]奇异摄动向量场的康利指数理论及其应用----其主要思想是利用康利指数来证明奇异摄动向量场中某些解的存在性。 Gedeon-Kokubu-Mischaikow-Oka-Reineck (1999) 给出了此类论证的便捷表述,并使用该表述,在浅容器中的流体动力学建模方程中获得了用符号动力学描述的各种解。然后将该框架扩展到多维慢流形的情况。作为应用,Gardner-Smoller(1983)研究的某些反应扩散系统中周期性行波的存在性得到了另一种证明,并得到了上述用符号动力学描述的一组解。 得到了这种叶状结构对边界球的非横向性。[C] Henon族的均匀双曲性和非最大熵轨迹-结果之一如下。由参数值 (a, b)=(-1.35, 0.2) 处的三次多项式给出的 Henon 映射不与一致双曲且展开的一维多项式的任何小扰动映射共轭。[D] 定点集的辫子类型 - 使用辫子类型的概念将等价关系引入到定点集以进行定向 在具有有限固定点的圆盘上保持同胚。结果表明,定点的编织类型完全决定了定点指数。

项目成果

期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A lap number formula in higher dimensions and rigorous entropy estimates for Lozi maps
高维圈数公式和 Lozi 映射的严格熵估计
  • DOI:
  • 发表时间:
    2002
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Y.Ishii;A.Shudo;K.S.Ikeda
  • 通讯作者:
    K.S.Ikeda
Holomorphic foliations of codimension one transverse to polydiscs
多盘横向余维一的全纯叶状结构
環境問題の理論と政策、第4章Lorenz方程式とカオス(寺田宏洲編著)
环境问题的理论与政策,第4章洛伦兹方程与混沌(寺田宏主编)
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T.Ito;B.Scardua;岡宏枝
  • 通讯作者:
    岡宏枝
Oka, Hiroe: "Conley index theory for slow-fast systems : multi-dimensional slow manifold"Proceedings of Equadiff 2003. (発表予定).
Oka, Hiroe:“慢快系统的康利指数理论:多维慢流形”Equadiff 2003 年论文集。(待提交)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
A.Shudo, Y.Ishii, K.S Ikeda: "Julia set describes quantum tunnelling in the presence of chaos"J.Phys.A : Math.Gen.. 35. L225-L231 (2002)
A.Shudo、Y.Ishii、K.S Ikeda:“Julia 集描述了混沌中的量子隧道效应”J.Phys.A : Math.Gen.. 35. L225-L231 (2002)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

OKA Hiroe其他文献

OKA Hiroe的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('OKA Hiroe', 18)}}的其他基金

Analysis of the global structure of chaotic dynamical systems by topological and computational methods
用拓扑和计算方法分析混沌动力系统的全局结构
  • 批准号:
    21540231
  • 财政年份:
    2009
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Topological and computational methods for dynamical systems basedon the theory of Conley index
基于康利指数理论的动力系统拓扑与计算方法
  • 批准号:
    17540206
  • 财政年份:
    2005
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of chaotic dynamical systems by means of the Conley index theory
利用康利指数理论研究混沌动力系统
  • 批准号:
    10640220
  • 财政年份:
    1998
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Development of knowledge-based computational method for drug discovery targeting cryptic pockets
开发基于知识的计算方法,用于针对神秘口袋的药物发现
  • 批准号:
    23K06085
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Elucidation of semi-solid dynamics by innovative computational method and challenge to material microstructure refinement
通过创新计算方法阐明半固体动力学以及对材料微观结构细化的挑战
  • 批准号:
    23H00160
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Development of a Fast and Accurate Computational Method through Learning-based Iterative Alternating Optimization
通过基于学习的迭代交替优化开发快速准确的计算方法
  • 批准号:
    23K16953
  • 财政年份:
    2023
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Spatiotemporal encryption of terahertz light assisted by computational method
计算方法辅助的太赫兹光时空加密
  • 批准号:
    CRC-2019-00127
  • 财政年份:
    2022
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Canada Research Chairs
Spatiotemporal Encryption Of Terahertz Light Assisted By Computational Method
计算方法辅助的太赫兹光时空加密
  • 批准号:
    CRC-2019-00127
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Canada Research Chairs
Development of a new computational method for predicting drug - target interactions using a TSR-based representation of 3-D structures
开发一种新的计算方法,使用基于 TSR 的 3-D 结构表示来预测药物-靶点相互作用
  • 批准号:
    10363369
  • 财政年份:
    2021
  • 资助金额:
    $ 2.11万
  • 项目类别:
Development of novel computational method for identification of druggable cryptic pocket on protein surface
开发新的计算方法来识别蛋白质表面可成药的隐秘口袋
  • 批准号:
    20K15974
  • 财政年份:
    2020
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Identification of Master Transcription Factors of Dental Epithelial Stem Cell by Computational Method
计算方法鉴定牙上皮干细胞主转录因子
  • 批准号:
    10037827
  • 财政年份:
    2020
  • 资助金额:
    $ 2.11万
  • 项目类别:
Spatiotemporal encryption of terahertz light assisted by computational method
计算方法辅助的太赫兹光时空加密
  • 批准号:
    CRC-2019-00127
  • 财政年份:
    2020
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Canada Research Chairs
Development of Simulator for Super-Precision Machining by Nano-Bubbles based on Computational Method
基于计算方法的纳米气泡超精密加工模拟器的研制
  • 批准号:
    20K05147
  • 财政年份:
    2020
  • 资助金额:
    $ 2.11万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了