New methods for electronic excited states of solids using localized basis
使用局域基研究固体电子激发态的新方法
基本信息
- 批准号:14540368
- 负责人:
- 金额:$ 1.92万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2002
- 资助国家:日本
- 起止时间:2002 至 2004
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We have developed a first-principles method for excited states of polymers using gaussian basis sets and proposed other efficient methods for studying excited states of solids, as summarized as the following.1.A computational method has been developed to calculate excited states of one-dimensional periodic systems using Hartree-Fock crystal orbital theory with gaussian basis sets, coupled-cluster theory, and equation-of-motion coupled-cluster theory. The method makes it possible to calculate excited states of polymers by taking electron correlation effects into accounts with high accuracy. The calculated excitation energies of polyethylene were well comparable with experiments.2.Two spin-density wave states were found in polydiacetylene between acetylene and butatriene structures from spin-unrestricted density functional calculations. The corresponding potential energy functions were different.3.A simplified computational method for excited states was proposed using time-dependent density functional theory and Bethe-Salpeter equation based on the assumption of a local electron-hole interaction.4.A computational method for excited states of strongly-correlated materials was proposed using dynamical mean-field theory and GW approximation. The method was successfully applied to electronic band structure of Ni. The agreement with the experimental band energies was excellent.5.Exchange-correlation kernel (fxc) in time-dependent density-functional theory was obtained from two-dimensional Hubbard model. By comparison with theoretical excitation spectrum it was demonstrated that fxc has strong energy dependence in the energy regions where there are many-body excitations.
我们利用高斯基集开发了聚合物激发态的第一性原理方法,并提出了研究固体激发态的其他有效方法,总结如下。利用具有高斯基集的Hartree-Fock晶体轨道理论、耦合簇理论和运动方程耦合簇理论,建立了一维周期系统激发态的计算方法。该方法考虑了电子相关效应,使聚合物的激发态计算具有较高的精度。计算得到的聚乙烯激发能与实验结果吻合较好。通过不受自旋限制的密度泛函计算,在聚二乙炔和丁烯结构之间发现了两种自旋密度波态。对应的势能函数不同。基于局域电子-空穴相互作用的假设,利用时变密度泛函理论和Bethe-Salpeter方程,提出了激发态的简化计算方法。利用动力学平均场理论和GW近似,提出了一种强相关材料激发态的计算方法。该方法成功地应用于镍的电子能带结构。所得能带能与实验结果吻合良好。基于二维Hubbard模型,得到了时变密度泛函理论中的交换相关核。通过与理论激发谱的比较,证明了fxc在存在多体激发的能量区具有较强的能量依赖性。
项目成果
期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
F.Aryasetiawan, F.Miyake, K.Terakura: "Total energy method from many-body formulation"Phys. Rev. Lett.. vol.88,no.16. 166401-1-166401-4 (2002)
F.Aryasetiawan、F.Miyake、K.Terakura:“多体公式的总能量方法”Phys。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
T.Ishida, G.C.Schatz: "A local interpolation scheme using no derivatives in potential sampling : application to O(D-1)+H-2 system"J.Comput.Chem.. 24・9. 1077-1086 (2003)
T.Ishida、G.C.Schatz:“在势采样中不使用导数的局部插值方案:在 O(D-1)+H-2 系统中的应用”J.Comput.Chem.. 24・9 (2003)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
EXCHANGE-CORRELATION KERNEL IN TIME-DEPENDENT DENSITY FUNCTIONAL THEORY DERIVED FROM MANY-BODY THEORY
多体理论推导的时变密度泛函理论中的交换相关核
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:K.Karlsson;F.Aryasetiawan
- 通讯作者:F.Aryasetiawan
Equation-of-motion coupled-cluster study on exciton states of poly ethylene with periodic boundary condition
周期性边界条件下聚乙烯激子态的运动方程耦合团簇研究
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:H.Katagiri
- 通讯作者:H.Katagiri
A density functional study of backbone structures of polydiacetylene : destabilization of butatriene structure
聚二乙炔主链结构的密度泛函研究:丁三烯结构的不稳定
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:H.Katagiri;Y.Shimoi;S.Abe
- 通讯作者:S.Abe
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KATAGIRI Hideki其他文献
KATAGIRI Hideki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KATAGIRI Hideki', 18)}}的其他基金
Anatomical and biochemical analyses of paprasympathetic ganglia in the pancreas
胰腺旁交感神经节的解剖和生化分析
- 批准号:
16K15486 - 财政年份:2016
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Mechanism of determining genomic copy number according to analyses of early-onset diabetic patients
根据早发糖尿病患者的分析确定基因组拷贝数的机制
- 批准号:
26670447 - 财政年份:2014
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Multiobjective production and distribution network optimization in fuzzy stochastic environments
模糊随机环境下的多目标生产和分配网络优化
- 批准号:
24510190 - 财政年份:2012
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
New Conceptual Framework for Copy Number Variation-associated Diabetes
拷贝数变异相关糖尿病的新概念框架
- 批准号:
24659439 - 财政年份:2012
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Discovery of a novel inter-organ metabolic communication system
发现一种新型器官间代谢通讯系统
- 批准号:
23390238 - 财政年份:2011
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Bi-level multi-objective delivery planning problems in fuzzy stochastic environments
模糊随机环境下的双层多目标交付规划问题
- 批准号:
22710145 - 财政年份:2010
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Competitive facility location problemson networks under fuzzy and stochastic environments
模糊随机环境下网络竞争设施选址问题
- 批准号:
20710118 - 财政年份:2008
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Role of Neuronal Network System in Development of the Metabolic Syndrome
神经元网络系统在代谢综合征发生中的作用
- 批准号:
20390252 - 财政年份:2008
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Unraveling liver-derived signals against obesity and diabetes
解开针对肥胖和糖尿病的肝源信号
- 批准号:
18390267 - 财政年份:2006
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of gene therapy for diabetes associated with obesity
肥胖相关糖尿病基因疗法的开发
- 批准号:
15390282 - 财政年份:2003
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似海外基金
Redox and Excited State Properties of Oligothiophene-Bearing Ru(II) Photodrugs
含低聚噻吩 Ru(II) 光药物的氧化还原和激发态性质
- 批准号:
2400127 - 财政年份:2024
- 资助金额:
$ 1.92万 - 项目类别:
Standard Grant
CAREER: Computational Design of Fluorescent Proteins with Multiscale Excited State QM/MM Methods
职业:利用多尺度激发态 QM/MM 方法进行荧光蛋白的计算设计
- 批准号:
2338804 - 财政年份:2024
- 资助金额:
$ 1.92万 - 项目类别:
Continuing Grant
Investigation of Long-Range Charge Transfer and Excited State Processes in Biochemical Systems
生化系统中长程电荷转移和激发态过程的研究
- 批准号:
10713085 - 财政年份:2023
- 资助金额:
$ 1.92万 - 项目类别:
Elucidating spin-multiplicity-dependent excited-state dynamics of luminescent multiradicals
阐明发光多自由基的自旋多重性依赖的激发态动力学
- 批准号:
23K04699 - 财政年份:2023
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Excited State Specific Correlation Methods in Quantum Chemistry
量子化学中激发态特定关联方法
- 批准号:
2320936 - 财政年份:2023
- 资助金额:
$ 1.92万 - 项目类别:
Standard Grant
Development of excited-state bond homolysis as a key step for Ni catalysis
激发态键均裂的发展作为镍催化的关键步骤
- 批准号:
10753322 - 财政年份:2023
- 资助金额:
$ 1.92万 - 项目类别:
CAS: Collaborative Research: Mapping Excited State Trajectories of Multi-metal Centered Complexes by Two-Dimensional Electronic Spectroscopy
CAS:合作研究:通过二维电子光谱绘制多金属中心配合物的激发态轨迹
- 批准号:
2247821 - 财政年份:2023
- 资助金额:
$ 1.92万 - 项目类别:
Standard Grant
CAS: Collaborative Research: Mapping Excited State Trajectories of Multi-metal Centered Complexes by Two-Dimensional Electronic Spectroscopy
CAS:合作研究:通过二维电子光谱绘制多金属中心配合物的激发态轨迹
- 批准号:
2247822 - 财政年份:2023
- 资助金额:
$ 1.92万 - 项目类别:
Standard Grant
Revealing the Nanomorphology and Excited State Dynamics Behind the Ternary Advantage in Organic Photovoltaics
揭示有机光伏三元优势背后的纳米形态和激发态动力学
- 批准号:
2247711 - 财政年份:2023
- 资助金额:
$ 1.92万 - 项目类别:
Standard Grant
Photofunctionalizations based on Excited-State Spin Manipulations
基于激发态自旋操纵的光功能化
- 批准号:
23H01971 - 财政年份:2023
- 资助金额:
$ 1.92万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




