Trans-contextual inference system based only on distributed representations

仅基于分布式表示的跨上下文推理系统

基本信息

  • 批准号:
    15300068
  • 负责人:
  • 金额:
    $ 8.38万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2003
  • 资助国家:
    日本
  • 起止时间:
    2003 至 2006
  • 项目状态:
    已结题

项目摘要

It is considered that keys to overcome the limitations of classical artificial intelligence are to represent and process distributed information as patterns without symbolizing it, and to apply knowledge learned in a particular context to new situations in various contexts. The present study aimed to develop a pattern-based reasoning system that has high ability of analogical reasoning and common principles to that used in the brain, and obtained the following results.1. Multilayer neural networks, which are typical pattern-based information processing systems, have difficulty in learning input-output relation that depends strongly on context. To overcome this difficulty, we developed the selective desensitization method, with which part of neural elements are desensitized depending on the context. We show by numerical experiments that this model has much higher learning capacity and generalization performance than the conventional ones. This is because two kinds of distributed representations are integrated without using local representations, which greatly expands the potential of neural networks.2. By applying the above method to a kind of neural network called a trajectory attractor model, we built a reasoning system using distributed representations alone. This system deduces a conclusion by state transitions along a trajectory attractor formed in a large-scale dynamical system, and has powerful ability of analogical reasoning. We also showed that this system has many advantages over existing reasoning systems, for example, it can make nonmonotonic reasoning in a simple manner.3. To examine biological plausibility of the principles of our reasoning system, we constructed models of inferotemporal cortex and hippocampus and compare them with neurophysiological data. The results, together with other physiological and psychological grounds, strongly suggested that the selective desensitization method is actually used in the brain.
人们认为,克服经典人工智能局限性的关键是将分布式信息表示和处理为模式,而不将其符号化,并将在特定背景下学到的知识应用于各种背景下的新情况。本研究旨在开发一个具有高类比推理能力和与大脑推理规则相同的基于模式的推理系统,并取得了以下研究成果.多层神经网络是典型的基于模式的信息处理系统,但其输入输出关系对上下文的依赖性很强。为了克服这一困难,我们开发了选择性脱敏方法,根据上下文对部分神经元进行脱敏。数值实验表明,该模型具有比传统模型更高的学习能力和泛化性能。这是因为在不使用局部表示的情况下将两种分布式表示集成在一起,极大地扩展了神经网络的潜力.通过将上述方法应用于一种称为轨迹吸引子模型的神经网络,我们构建了一个仅使用分布式表示的推理系统。该系统通过沿着大规模动力学系统中形成的轨迹吸引子进行状态转移来推导结论,具有很强的类比推理能力。我们还证明了该系统与现有的推理系统相比具有许多优点,例如,它可以以简单的方式进行非单调推理.为了检验我们的推理系统原理的生物学可解释性,我们构建了颞下皮层和海马的模型,并将它们与神经生理学数据进行比较。这些结果,以及其他生理和心理方面的依据,强烈地表明选择性脱敏方法实际上是用于大脑的。

项目成果

期刊论文数量(32)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
側頭葉における文脈依存的連想の計算論的モデル
颞叶上下文相关关联的计算模型
嗅周皮質の可塑性に基づく受動的連合形成のモデル
基于鼻周皮层可塑性的被动联想形成模型
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    西村竜一;橋爪亜希;入野俊夫;河原英紀;諸上茂光
  • 通讯作者:
    諸上茂光
選択的不感化法を適用した層状ニューラルネットの情報統合能力
采用选择性脱敏方法的分层神经网络的信息整合能力
Two-attribute hypothesis in human visual feature integration
人类视觉特征整合中的二属性假设
非単調ニューラルネットによるパターンベース推論
非单调神经网络的基于模式的推理
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MORITA Masahiko其他文献

MORITA Masahiko的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MORITA Masahiko', 18)}}的其他基金

Solving the binding problem and modeling the integration process of multidimensional information based on the no-triplet hypothesis
基于无三元组假设解决绑定问题并对多维信息整合过程进行建模
  • 批准号:
    26590173
  • 财政年份:
    2014
  • 资助金额:
    $ 8.38万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Function Approximation Using Selective Desensitization Neural Networks and its Applications
选择性脱敏神经网络函数逼近及其应用
  • 批准号:
    22300079
  • 财政年份:
    2010
  • 资助金额:
    $ 8.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A new development of image processing system sing X-ray CT and microscope
X射线CT和显微镜图像处理系统的新发展
  • 批准号:
    20680003
  • 财政年份:
    2008
  • 资助金额:
    $ 8.38万
  • 项目类别:
    Grant-in-Aid for Young Scientists (A)
The Time-Dependent Expression of Proliferating Cell Marker in Skin Wounds
皮肤伤口中增殖细胞标志物的时间依赖性表达
  • 批准号:
    06670464
  • 财政年份:
    1994
  • 资助金额:
    $ 8.38万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
Studies on Asphyxia: Electron microscopic, immunohistochemical and biochemical studies.
窒息研究:电子显微镜、免疫组织化学和生化研究。
  • 批准号:
    61570294
  • 财政年份:
    1986
  • 资助金额:
    $ 8.38万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

Function Approximation Using Selective Desensitization Neural Networks and its Applications
选择性脱敏神经网络函数逼近及其应用
  • 批准号:
    22300079
  • 财政年份:
    2010
  • 资助金额:
    $ 8.38万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了