Autonomous, Harmonious and Purposive Acquisition of Various Functions of Robots by Reinforcement Learning and the Relation to the Intelligence Formation
强化学习自主、协调、有目的地获取机器人各种功能及其与智能形成的关系
基本信息
- 批准号:15300064
- 负责人:
- 金额:$ 4.16万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2006
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research was aimed to show that by the learning using the training signals that are derived by reinforcement learning, various functions emerge according to the necessity in a neural network to which sensor signals are directly entered and whose outputs are motor commands. The main fruits are as follows.1. It is said that neural networks are not good at symbol processing. However, it was shown that the output representation of a neural network became binary only by reinforcement learning.2. It was shown that a real robot could learn box-pushing behavior using neural network without giving any informatio a about image processing, image recognition, or the given task.3. It was shown that a real robot could learn to reach an object in some degree even in a quasi-real world where various objects and colorful leaflets exist.4. It was shown that a recurrent neural network trained by reinforcement learning could learn some tasks that are thought to be relevant to the spatial or temporal abstraction.
本研究旨在表明,通过使用强化学习衍生的训练信号进行学习,在直接输入传感器信号并输出运动命令的神经网络中,根据需要出现各种功能。主要的水果如下。据说神经网络不擅长符号处理。然而,只有通过强化学习,神经网络的输出表示才会变成二值。结果表明,机器人可以在不提供任何图像处理、图像识别或给定任务信息的情况下,利用神经网络学习推盒行为。结果表明,即使在存在各种物体和彩色传单的准真实世界中,真正的机器人也能在一定程度上学会够到物体。研究表明,通过强化学习训练的递归神经网络可以学习一些被认为与空间或时间抽象相关的任务。
项目成果
期刊论文数量(55)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
階層型ニューラルネットにおける中間層ての適応的空間再構成と中間層レベルの汎化に基づく知識の継承
分层神经网络中基于中间层自适应空间重构和中间层泛化的知识继承
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:柴田克成;伊藤宏司
- 通讯作者:伊藤宏司
Learning of Reaching a Colored Object Based on Direct-Vision-Based Reinforcement Learning and Acquired Internal Representation
基于直视强化学习和获得的内部表征的到达彩色物体的学习
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:K.Yuki;M.Sugisaka;K.Shibata
- 通讯作者:K.Shibata
An Explanation of Emergence of Reward Expectancy Neurons Usine Reinforcement Learning and Neural Net
使用强化学习和神经网络解释奖励期望神经元的出现
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Shinya Ishii;Munetaka Shidara;Katsunari Shibata
- 通讯作者:Katsunari Shibata
強化学習による探索行動の学習
使用强化学习学习探索行为
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Shinya Ishii;Munetaka Shidara;Katsunari Shibata;柴田克成
- 通讯作者:柴田克成
Discretization of Analog Communication Signals by Noise Addition in Communication Learning
通信学习中通过加噪实现模拟通信信号的离散化
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:K.Shibata;M.Nakanishi
- 通讯作者:M.Nakanishi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SHIBATA Katsunari其他文献
SHIBATA Katsunari的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SHIBATA Katsunari', 18)}}的其他基金
From "Exploration" To "Thinking" - Development of Chaos Dynamics through Reinforcement Learning
从“探索”到“思考”——通过强化学习发展混沌动力学
- 批准号:
15K00360 - 财政年份:2015
- 资助金额:
$ 4.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Exploration of a Breakthrough Technology for Emergence of Symbol Processing by Neuro-based Reinforcement Learning Considering Time Axis
考虑时间轴的基于神经的强化学习符号处理突破性技术的探索
- 批准号:
23500245 - 财政年份:2011
- 资助金额:
$ 4.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A challenge towards how far the emergence of higher functions can be explained by reinforcement learning using a neural network
使用神经网络的强化学习可以在多大程度上解释高级函数的出现的挑战
- 批准号:
19300070 - 财政年份:2007
- 资助金额:
$ 4.16万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
相似海外基金
A Long-range Recurrent Neural Network Mediates Threat Induced Innate Sensorimotor Integrations
远程循环神经网络介导威胁诱发的先天感觉运动整合
- 批准号:
10539071 - 财政年份:2022
- 资助金额:
$ 4.16万 - 项目类别:
A Long-range Recurrent Neural Network Mediates Threat Induced Innate Sensorimotor Integrations
远程循环神经网络介导威胁诱发的先天感觉运动整合
- 批准号:
10626968 - 财政年份:2022
- 资助金额:
$ 4.16万 - 项目类别:
Nano-photonic Processing Unit for Recurrent Neural Network Applications
用于循环神经网络应用的纳米光子处理单元
- 批准号:
20K19771 - 财政年份:2020
- 资助金额:
$ 4.16万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Creation of Robot's Tool-Body Assimilation Model Using Sparse Recurrent Neural Network
利用稀疏递归神经网络创建机器人工具体同化模型
- 批准号:
25730159 - 财政年份:2013
- 资助金额:
$ 4.16万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
Optimum Training Schemes for Recurrent Neural Network Nonlinear Filters
循环神经网络非线性滤波器的最优训练方案
- 批准号:
9616391 - 财政年份:1996
- 资助金额:
$ 4.16万 - 项目类别:
Standard Grant
Recurrent neural network models for exploration in dynamic environments.
用于动态环境中探索的循环神经网络模型。
- 批准号:
496990750 - 财政年份:
- 资助金额:
$ 4.16万 - 项目类别:
Research Grants