Research for 3D Space Map Acquisition for Robot by Combining Active Motion and Visual Perception
主动运动与视觉感知相结合的机器人3D空间地图获取研究
基本信息
- 批准号:15360213
- 负责人:
- 金额:$ 9.28万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2003
- 资助国家:日本
- 起止时间:2003 至 2005
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This research project aimed to develop an active vision strategy to let a robot obtain 3D scene understanding from his stereo eyes. That is, the robot constructs a 3D map of an unknown environment by himself using his own eyes (cameras) and his own intentional actions. The task to get to know the external world using vision is absolutely difficult for artificial systems, such as robots, while our human achieves it easily without teacher or advance knowledge. In this research, we placed an answer based on a key concept of the invariance against our actions.We reported a realization of the direct perception of three-dimensional space in a robot. We proposed a method to calibrate the stereo eyes of a robot to build 3D map in his brain. It does not need an external reference of calibration objects but a combination of active motion and visual perception.The idea is common to so-called the self-calibration to some extent. But, the calibration and the following construction of the 3D map still considered separately in the self-calibration. In our method, we combine action and vision to achieve totally efficient calibration and the construction of the 3D map. We rely only on the consistency in the calibration results. We introduced the fact that "stationary object both in the real environment and on the robot's 3D map never moves even when the robot moves around". This means that we accept a calibration error and resulting geometric distortion of the constructed 3D map. We consider that the most important for the 3D map is the consistency between the intended motion of the robot and the perceived image by the robot.We showed the feasibility of this idea with plenty of simulation experiments and implementation on actual robots.
本研究旨在发展一种主动视觉策略,让机器人从立体视觉中获得3D场景的理解。也就是说,机器人使用自己的眼睛(摄像机)和自己的有意动作自己构建未知环境的3D地图。使用视觉来了解外部世界的任务对于人工系统(如机器人)来说是绝对困难的,而我们的人类在没有老师或先进知识的情况下很容易做到。在这项研究中,我们放置了一个答案的基础上的一个关键概念的不变性对我们的行动。我们报告了一个实现的直接感知三维空间的机器人。提出了一种标定机器人立体眼睛的方法,用于在机器人大脑中构建三维地图。它不需要外部标定物的参考,而是将主动运动和视觉感知结合起来,这种思想在一定程度上与所谓的自标定是相通的。但是,在自标定中,标定和随后的3D图的构建仍然是分开考虑的。在我们的方法中,我们结合联合收割机的行动和视觉,以实现完全有效的校准和三维地图的建设。我们只依赖于校准结果的一致性。我们介绍了这样一个事实,即“即使机器人四处移动,真实的环境中和机器人3D地图上的静止物体也不会移动”。这意味着我们接受校准误差和所构建的3D地图的所产生的几何失真。我们认为对于3D地图最重要的是机器人的预期运动和机器人感知到的图像之间的一致性,我们通过大量的仿真实验和实际机器人的实现来证明这一想法的可行性。
项目成果
期刊论文数量(53)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
HHMM Based Recognition of Human Activity Motion Trajectories in Image Sequences
基于 HHMM 的图像序列中人体活动运动轨迹识别
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Daiki KAWANAKA;Shun USHIDA;Takayuki OKATANI;Koichiro DEGUCHI
- 通讯作者:Koichiro DEGUCHI
A scale-space analysis of a contour figure using a crystalline flow
使用结晶流对轮廓图进行尺度空间分析
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:H.Hontani;Y.Suzuki;Y.Giga;M.-H.Giga;K.Deguchi
- 通讯作者:K.Deguchi
Binocular motion tracking by gaze fixation control and three-dimensional shape reconstruction
- DOI:10.1163/156855303322554427
- 发表时间:2003-01
- 期刊:
- 影响因子:2
- 作者:Y. Satoh;Takayuki Okatani;K. Deguchi
- 通讯作者:Y. Satoh;Takayuki Okatani;K. Deguchi
Object tracking by the mean-shift of regional color distribution combined with the particle-filter algorithm
通过区域颜色分布的均值偏移结合粒子滤波算法进行目标跟踪
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Koichiro Deguchi;Daiki Kawanaka;Takayuki Okatani
- 通讯作者:Takayuki Okatani
Range Image Matching for Object Recognition in Real Scene
实景物体识别的距离图像匹配
- DOI:
- 发表时间:2004
- 期刊:
- 影响因子:0
- 作者:Kagehiro Nagao;Takayuki Okatani;Koichiro Deguchi
- 通讯作者:Koichiro Deguchi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
DEGUCHI Koichiro其他文献
DEGUCHI Koichiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('DEGUCHI Koichiro', 18)}}的其他基金
Establishing the Information Theoretical Approach to Active Sensing and Recognition
建立主动感知和识别的信息理论方法
- 批准号:
21360194 - 财政年份:2009
- 资助金额:
$ 9.28万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Development of Active Visual Sensing Mechanism for Realizing Fast and Stable Robot Motions
开发主动视觉传感机制以实现快速稳定的机器人运动
- 批准号:
18360192 - 财政年份:2006
- 资助金额:
$ 9.28万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study of 3D Fundus Pattern Reconstruction and Display from Fundus Images
眼底图像3D眼底图案重建与显示研究
- 批准号:
12450161 - 财政年份:2000
- 资助金额:
$ 9.28万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study of Visual Servoing Robot Control without High Level Image Processing Technique
无高级图像处理技术的视觉伺服机器人控制研究
- 批准号:
10555141 - 财政年份:1998
- 资助金额:
$ 9.28万 - 项目类别:
Grant-in-Aid for Scientific Research (B).
Study of Remote Visual Servoing Control by Pseudo Stereo Method
伪立体法远程视觉伺服控制研究
- 批准号:
09450165 - 财政年份:1997
- 资助金额:
$ 9.28万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study of Visual Servoing for Robot Hand Control
机器人手控视觉伺服研究
- 批准号:
07455167 - 财政年份:1995
- 资助金额:
$ 9.28万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Study of 3D Shape Reconstruction from Medical and Industrial Endoscope Images
医疗和工业内窥镜图像的 3D 形状重建研究
- 批准号:
06555117 - 财政年份:1994
- 资助金额:
$ 9.28万 - 项目类别:
Grant-in-Aid for Developmental Scientific Research (B)
Study of Camera Calibration of Its Position and Pose from Images
相机位姿图像标定研究
- 批准号:
05650379 - 财政年份:1993
- 资助金额:
$ 9.28万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
Neural correlates of active vision
主动视觉的神经相关性
- 批准号:
RGPIN-2020-06018 - 财政年份:2022
- 资助金额:
$ 9.28万 - 项目类别:
Discovery Grants Program - Individual
FASTPICK: Novel active vision and picking head to robotically harvest soft fruit
FASTPICK:新颖的主动视觉和采摘头,可自动收获软果
- 批准号:
99863 - 财政年份:2021
- 资助金额:
$ 9.28万 - 项目类别:
Collaborative R&D
Neural correlates of active vision
主动视觉的神经相关性
- 批准号:
RGPIN-2020-06018 - 财政年份:2021
- 资助金额:
$ 9.28万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: NCS-FO: Active vision during natural behavior: More than meets the eye?
合作研究:NCS-FO:自然行为期间的主动视觉:不仅仅是表面上看到的?
- 批准号:
2123568 - 财政年份:2021
- 资助金额:
$ 9.28万 - 项目类别:
Standard Grant
Examining the Interactions and Dependencies between Active Vision and Reasoning
检查主动视觉和推理之间的相互作用和依赖性
- 批准号:
RGPIN-2016-05352 - 财政年份:2021
- 资助金额:
$ 9.28万 - 项目类别:
Discovery Grants Program - Individual
Collaborative Research: NSC-FO: Active vision during natural behavior: More than meets the eye?
合作研究:NSC-FO:自然行为期间的主动视觉:不仅仅是表面上看到的?
- 批准号:
2123605 - 财政年份:2021
- 资助金额:
$ 9.28万 - 项目类别:
Standard Grant
Neural correlates of active vision
主动视觉的神经相关性
- 批准号:
RGPIN-2020-06018 - 财政年份:2020
- 资助金额:
$ 9.28万 - 项目类别:
Discovery Grants Program - Individual