ルート系の組合せ論と関連した対数的ベクトル場の幾何学
与根系统组合相关的对数向量场的几何
基本信息
- 批准号:04J00658
- 负责人:
- 金额:$ 1.22万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for JSPS Fellows
- 财政年份:2004
- 资助国家:日本
- 起止时间:2004 至 2005
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
昨年度に引き続き、実超平面配置の補集合の極小セル分割の構造を調べた。基本群の新しい表示や、局所系係数のchain complexの境界写像を、chamberのトポロジーを使って記述することに成功した。この時点で論文としてまとめ、専門誌に投稿した。これらの成果の具体的な応用は今後の課題である。A2型ルート系に付随した、ある種のアフィン直線配置の続に対して、その特性多項式の変化が、非常に単純な規則にしたがっていることを観察した。筆者はこの現象の背後に、対数的ベクトル場の幾何学的な性質があると考え、「3-shift問題」を定式化した。計算機(Macaulay)による多くの実験はこの予想を支持しており、またK.Saitoのホッジフィルトレーション、平坦構造の理論とのアナロジーなども観察されている。この問題は一般のルート系に対しても、「h-shift問題」(ただしhはコクセター数)として定式化できるが、現時点ではA2の場合を証明することが目標である。筆者は最近、モース関数の勾配流により、chamberとログ微分形式を結びつけるアイデアを得た。これに基づいて、カレントによる平坦接続を構成した。このカレント接続のモノドロミーは、従来よく研究されてきたKZ型平坦接続のモノドロミーと(up to conjugateで)「同等」であり、かつモノドロミーが指数写像だけで具体的に書けるという利点を持つ。まだ実験段階であるが、気補群の群論的性質の解明、補集合の有理ホモトピー型の研究への応用が期待される。
Last year's に lead き続 き, 実 hyperplane configuration の complement set の minimal セル segmentation の structure を tune べ た. The basic group's new expression, the bureau's coefficient, the chain complex's realm writing, and the chamber's description, the success.この时でthesis としてまとめ、専门志にContribution した. The results are specific and will be applied to future projects. A2 type ルート system, the にpays the した, the あるkind のアフィン straight configuration の続に対して, そのThe characteristic polynomial is changed, and the very pure rule is used. The author discusses the background of the phenomenon, the properties of the geometry of the cyclical fields, and the formalization of the "3-shift problem". Computer (Macaulay) による多くの実験はこの如意をsupport しており、またK.Sai toのホッジフィルトレーション, flat structure theory and theory.このquestionはGeneral のルート式に対しても、「h-shift problem」(ただしhはコクセターnumber) として Formulated できるが, current point ではA2 の occasion を proof することが target である. The author has recently been working on により and chamber とログdifferential form. The これに本づいて, the カレントによるflat connection 続を constitute the した.このカレント涚のモノドロミーは、従来よく Research されてきたKZ type flat connection 続のモノドロミーと(up to conjugateで) "Equal" であり, かつモノドロミーがindex is written like だけでspecific に书けるという利Pointをholdつ.まだ実験级であるが, 気supplementary group’s explanation of the properties of group theory, 気supplementary set’s のrational ホモトピーtype のresearch and への応utilityがexpectationされる.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
吉永 正彦其他文献
Milnor fibers of hyperplane arrangements
超平面排列的细纤维
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
吉永 正彦;石橋 卓;菅原 朔見;吉永正彦;吉永正彦 - 通讯作者:
吉永正彦
Old and new results on Catalan arrangements
加泰罗尼亚安排的新旧结果
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
吉永 正彦;石橋 卓;菅原 朔見;吉永正彦;吉永正彦;吉永正彦;吉永正彦;吉永正彦;吉永正彦 - 通讯作者:
吉永正彦
Edelman-Reiner conjecture revisited
重新审视埃德尔曼-赖纳猜想
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
吉永 正彦;石橋 卓;菅原 朔見;吉永正彦;吉永正彦;吉永正彦;吉永正彦;吉永正彦;吉永正彦;吉永正彦 - 通讯作者:
吉永正彦
Vassiliev filtration and Varchenko-Gelfand filtration
Vassiliev 过滤和 Varchenko-Gelfand 过滤
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
吉永 正彦;石橋 卓;菅原 朔見;吉永正彦 - 通讯作者:
吉永正彦
吉永 正彦的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('吉永 正彦', 18)}}的其他基金
Discrete structures related to hyperplane arrangements, generalization, deepening, and applications
与超平面排列、泛化、深化和应用相关的离散结构
- 批准号:
23H00081 - 财政年份:2023
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Study of holonomic constants using algebraic analysis
使用代数分析研究完整常数
- 批准号:
22K18668 - 财政年份:2022
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Commutative algebraic study of hyperplane arrangements
超平面排列的交换代数研究
- 批准号:
18F18756 - 财政年份:2018
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for JSPS Fellows
相似海外基金
超平面配置の対数的ベクトル場の総合的研究
超平面构形中对数向量场的综合研究
- 批准号:
23K20788 - 财政年份:2024
- 资助金额:
$ 1.22万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




