Global analysis of the heat kernels on Riemannian manifolds and graphs

黎曼流形和图上热核的全局分析

基本信息

  • 批准号:
    16340044
  • 负责人:
  • 金额:
    $ 10.43万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
  • 财政年份:
    2004
  • 资助国家:
    日本
  • 起止时间:
    2004 至 2006
  • 项目状态:
    已结题

项目摘要

The heat kernels of compact Riemannian manifolds converge to the equilibrium when time goes to infinity. We studied the rates of the heat kernels how do they reflect from the geometric structures of Riemannian manifolds. We showed the convergence rates are Lipshitz continuous on the deformation of Riemannian manifolds, we gave their upper estimation in terms of Ricci curvature and diameter, and also the upper estimation in terms of the non-zero first eigenvalue of the Laplacian. We gave their precise lower and upper estimations in the case of compact Riemannian symmetric spaces of rank one.A Yang-Mills connection is a critical point of the Yang-Mills functional, and this is an analogue of harmonic map which is a critical point of the energy functional. Recently, the notion of biharmonic map was introduced which is a critical point of the 2-energy functional. We introduced the notion of 2-Yang-Mills connection which is a critical point of the 2-Yang-Mills functional. This notion is a natural generalization of Yang-Mills connection, and many further studies would be expected.We introduced quite new method to visualize the Dirichlet or Neumann boundary eigenvalue problem of the Laplacian on plane domains. This method improved 20 percents fast comparing the known methods and reduced many steps input the data into computers. This new method made visualizations of the eigenvalue problems of the Laplacian on compact surfaces and bounded three dimensional domains. We applied to get patent of this method for programming of computer.
紧致黎曼流形的热核在时间趋于无穷时收敛于平衡态。研究了黎曼流形几何结构对热核的反射速率的影响。我们证明了黎曼流形变形的收敛率是Lipshitz连续的,我们给出了它们在里奇曲率和直径方面的上估计,以及在拉普拉斯的非零第一特征值方面的上估计。在秩为1的紧黎曼对称空间中给出了它们的精确上下估计。Yang-Mills连接是Yang-Mills泛函的一个临界点,这是调和映射的类似物,它是能量泛函的一个临界点。最近,引入了双调和映射的概念,它是二能泛函的一个临界点。我们引入了2-Yang-Mills连接的概念,它是2-Yang-Mills泛函的一个临界点。这一概念是对杨-米尔斯联系的自然推广,并期望有更多的进一步研究。介绍了一种新的方法来可视化平面上拉普拉斯算子的Dirichlet或Neumann边界特征值问题。该方法比已知方法提高了20%的速度,并减少了将数据输入计算机的许多步骤。该方法将拉普拉斯算子在紧曲面和有界三维域上的特征值问题可视化。我们申请了该方法的计算机编程专利。

项目成果

期刊论文数量(35)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The heat kernel and Green kernel of an infinite graph
无限图的热核和格林核
微積分の基礎
微积分基础知识
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    N.Shimono;N.Koyama;M.Kawaguchi;H.Urakawa;H.Urakawa;H.Urakawa;H.Urakawa;H.Urakawa;H.Urakawa;浦川 肇;浦川 肇
  • 通讯作者:
    浦川 肇
Total curvature of noncompact piecewise Riemannian 2-polyhedra
非紧分段黎曼2-多面体的总曲率
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Martin Arkowitz;M.Arkowitz;M.Arkowitz;Hideaki Oshima;Hideaki Oshima;Jin-icji Itoh
  • 通讯作者:
    Jin-icji Itoh
Collapsing to Riemannian manifolds with boundary and the convergence of the eigenvalues of the Laplacian
坍缩为带边界的黎曼流形以及拉普拉斯特征值的收敛
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Masami Kawaguchi;Sukehiro Niga;Nobuaki Gou;Kazuo Miyake;J.Takahashi
  • 通讯作者:
    J.Takahashi
Visualization of the eigenvalue problems of the Laplacian for embedded surfaces and its applications
嵌入曲面拉普拉斯算子特征值问题的可视化及其应用
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

URAKAWA Hajime其他文献

URAKAWA Hajime的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('URAKAWA Hajime', 18)}}的其他基金

New development of harmonic maps
调和图的新发展
  • 批准号:
    21540207
  • 财政年份:
    2009
  • 资助金额:
    $ 10.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Global Analysis of the heat kernel and Green kernel of an Infinite Graph
无限图热核和绿核的全局分析
  • 批准号:
    13440051
  • 财政年份:
    2001
  • 资助金额:
    $ 10.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Global Analysis of the Spectrum of an Infinite Graph
无限图谱的全局分析
  • 批准号:
    10440056
  • 财政年份:
    1998
  • 资助金额:
    $ 10.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B).

相似海外基金

On the convergence rate improvement of fixed point algorithms and its applications
论定点算法收敛速度的提高及其应用
  • 批准号:
    23K03235
  • 财政年份:
    2023
  • 资助金额:
    $ 10.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on convergence rate of weakly computable reals
弱可计算实数收敛速度研究
  • 批准号:
    22K03408
  • 财政年份:
    2022
  • 资助金额:
    $ 10.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Effect of Value Function Initialization on the Convergence Rate of Reinforcement Learning
价值函数初始化对强化学习收敛率的影响
  • 批准号:
    565683-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 10.43万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了