Study of conformal differential geometry
共形微分几何研究
基本信息
- 批准号:16540075
- 负责人:
- 金额:$ 1.72万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2004
- 资助国家:日本
- 起止时间:2004 至 2007
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Among many geometric structures of a manifold we are mainly interested in those structures which are closely related to the conformal geometry. Here are some of main results of this research project :1. For a regular curve x : I>M in a conformal manifold M, we can define a projective structure on the interval. Moreover if M is the standard sphere and if the projective developing map of I to the real projective line is injective, then the curve x is injective2. Suppose that we are given a complex number a which is not real and that f is a continuously differentiable complex function defined on a domain in the complex plain. If for four points which have the anharmonic ratio a, the images of the four points also have the same anharmonic ratio, then f is a Moebius transformation. This result is an extension of a theorem by Haruki and Rassias in 1996.3. An analogy of the Yamabe problem in conformal differential geometry is formulated in projective differential geometry. We have given a characterization of the Riemannian connection of an Einstein metric of negative scalar curvature only in terms of affine differential geometry using, the variational method.
在流形的众多几何结构中,我们主要研究与共形几何密切相关的结构。以下是本研究项目的主要成果:1.对于共形流形M中的正则曲线x:I>M,我们可以在区间上定义一个射影结构。此外,若M是标准球面,且I到真实的射影直线的射影展开映射是内射的,则曲线x是内射的。设给定一个非真实的复数a,f是复平面上一个定义域上的连续可微复函数。如果对于具有非调和比a的四个点,这四个点的图像也具有相同的非调和比,则f是Moebius变换。这个结果是Haruki和Rassias在1996年的一个定理的推广。在共形微分几何中的Yamabe问题的一个类比是制定在射影微分几何。本文仅用仿射微分几何的变分方法,给出了具有负数量曲率的Einstein度量的黎曼联络的一个特征。
项目成果
期刊论文数量(32)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Projective structures of a curve in a conformal space
共形空间中曲线的射影结构
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Hajime SATO;Tetsuya OZAWA;Hiroshi SUZUKI;小沢 哲也;Tetsuya OZAWA;小沢 哲也;Tetsuya OZAWA;Watamura et al.(eds.);O. Kobayashi
- 通讯作者:O. Kobayashi
Ricci curvature of affine connections
仿射连接的里奇曲率
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:O.;Kobayashi;小林 治;Osamu Kobayashi;O. Kobayashi
- 通讯作者:O. Kobayashi
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KOBAYASHI Osamu其他文献
KOBAYASHI Osamu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KOBAYASHI Osamu', 18)}}的其他基金
Basic study on public assistance and support for families with school children.
对学童家庭的公共援助和支持的基础研究。
- 批准号:
26380776 - 财政年份:2014
- 资助金额:
$ 1.72万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
DEVELOPING FOREST-ESD MODELS IN COLLABORATION WITH THE VISUALLY IMPAIRED
与视障人士合作开发森林可持续发展模型
- 批准号:
21300293 - 财政年份:2009
- 资助金额:
$ 1.72万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Differential geometry on conformal structures and projective structures
共形结构和射影结构的微分几何
- 批准号:
20540084 - 财政年份:2008
- 资助金额:
$ 1.72万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Developing learning tools and programs and training visually impaired as leaders for forest environmental education
开发学习工具和计划,并培训视障人士作为森林环境教育的领导者
- 批准号:
18500669 - 财政年份:2006
- 资助金额:
$ 1.72万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The role of COX2 and its byproducts as a modulator of tumor-immuno system
COX2及其副产物作为肿瘤免疫系统调节剂的作用
- 批准号:
14570508 - 财政年份:2002
- 资助金额:
$ 1.72万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Gemetric Structures on Manifolds and Global Analysis
流形上的几何结构和全局分析
- 批准号:
09440034 - 财政年份:1997
- 资助金额:
$ 1.72万 - 项目类别:
Grant-in-Aid for Scientific Research (B)