Infinitely generated objects
无限生成的对象
基本信息
- 批准号:16540125
- 负责人:
- 金额:$ 1.65万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2004
- 资助国家:日本
- 起止时间:2004 至 2007
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
We have gotten results on the following five items. That is, we gotten considerably sufficient results for our original plans except for continuous words.(1) The fundamental groups of wild spaces ; (2) New constructions of wild spaces ; (3) A classification of finite-sheeted convering maps over 2-dimensional compact abelian groups ; (4) Grope groups ; (6) Infinitary words.(1): Suppose that a Peano continuum X is wild everywhere, i.e. not locally semi-simply connected at every point and pi_1(X) is a subgroup of the free product G^*H. Then, pi_1(X) is a conjugate of a subgroup of G or H. This implies that the fundamental groups of wild Peano continua cannot only be taken part into free products, but have a completely opposite property. This result was announced at the occasion of Borsuk conference and was submitted in December of 2005. This result is applied to a study of the fundamental groups obtained by attaching copies of the Hawaiian aearring to manifolds.(2) : In a collabolation with D. Repovs and U. Karimov we introduced a new construction of a space SC(X), which is obtained by attaching a cone C(X) to the square along the Topologists' sine curve. For a connected space SC(X) is simply-connected, and pi _2(4) is trivial if and only if pi_1(X) is trivial.
我们在以下五个项目上取得了结果。也就是说,除了连续的单词外,我们的原始计划取得了相当大的结果。(1)基本的野生空间群体; (2)野生空间的新结构; (3)在二维紧凑型阿伯利亚组上的有限分配的转换图的分类; (4)灰分组; (6)无限单词。(1):假设Peano Continuum X到处都是野生的,即在每个点都不是局部半模拟连接,而PI_1(x)是自由产品G^*H的子组。然后,pi_1(x)是G或H子组的共轭物。这意味着野生Peano Continua的基本组不能仅仅参与免费产品,而是具有完全相反的特性。 This result was announced at the occasion of Borsuk conference and was submitted in December of 2005. This result is applied to a study of the fundamental groups obtained by attaching copies of the Hawaiian aearring to manifolds.(2) : In a collabolation with D. Repovs and U. Karimov we introduced a new construction of a space SC(X), which is obtained by attaching a cone C(X) to the square along the Topologists' sine 曲线。对于连接的空格SC(x),当且仅当PI_1(x)很琐碎时,PI _2(4)是微不足道的。
项目成果
期刊论文数量(17)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
On the fundamental group of R^3 modulo the Case-Chamberin continuum
关于 R^3 模 Case-Chamberin 连续统的基本群
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:K.Eda;V.Matijevic;G.Conner-K.Eda;K.Eda-U.H.Karimov-D.Repovs
- 通讯作者:K.Eda-U.H.Karimov-D.Repovs
Algebraic Topology of Peano continua
皮亚诺连续体的代数拓扑
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:K.Eda;Vlasta Matijevic;K.Eda-J. Mandic-V. Matijevic;K.Eda
- 通讯作者:K.Eda
Correction to : Algebraic topology of Peano continua and Fundamental groups having the whole information of spaces
修正:皮亚诺连续体的代数拓扑和具有空间全部信息的基本群
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:G.Conner;K.Eda
- 通讯作者:K.Eda
Finite sheeted covering maps over 2-dimensional connected, compact abelian groups
二维连通紧阿贝尔群上的有限片状覆盖图
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:H. Takagi;T. Miura;T. Hayata and S-E. Takahasi;K. Eda and V. Matijevic
- 通讯作者:K. Eda and V. Matijevic
「研究成果報告書概要(和文)」より
摘自《研究结果报告摘要(日文)》
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:Kawauchi;et. al.;Nishimura et al.;Dezawa et al.;Yoshizawa et al.;星野 幹雄;星野 幹雄
- 通讯作者:星野 幹雄
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
EDA Katsuya其他文献
EDA Katsuya的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('EDA Katsuya', 18)}}的其他基金
Ininfitely generated objects(fundamental groups of wild spaces)
无限生成的物体(野生空间的基本群)
- 批准号:
20540097 - 财政年份:2008
- 资助金额:
$ 1.65万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Total Synthesis of Dodecahedrane via Carbon–Carbon Bond Forming Cascades
通过碳-碳键形成级联全合成十二面体
- 批准号:
10679420 - 财政年份:2023
- 资助金额:
$ 1.65万 - 项目类别:
Ion Channels in Context: Structure and function in native cells and macromolecular complexes
上下文中的离子通道:天然细胞和大分子复合物的结构和功能
- 批准号:
10467403 - 财政年份:2022
- 资助金额:
$ 1.65万 - 项目类别:
From Fundamental Investigations to Catalysis: New Motifs in Main Group and Transition Metal Complexes
从基础研究到催化:主族和过渡金属配合物的新基序
- 批准号:
RGPIN-2019-07235 - 财政年份:2022
- 资助金额:
$ 1.65万 - 项目类别:
Discovery Grants Program - Individual
Improving Adherence to Breast Cancer Treatment Guidelines in Nigeria
提高尼日利亚对乳腺癌治疗指南的遵守率
- 批准号:
10684652 - 财政年份:2022
- 资助金额:
$ 1.65万 - 项目类别:
Group 14 nanomaterials in all dimensions: Synthesis, Fundamental Understanding and Practical Application.
第 14 组纳米材料的各个方面:合成、基本理解和实际应用。
- 批准号:
RGPIN-2020-04045 - 财政年份:2022
- 资助金额:
$ 1.65万 - 项目类别:
Discovery Grants Program - Individual