Data mining technique from huge graph structured data which are lossless compressed
无损压缩的海量图结构数据的数据挖掘技术
基本信息
- 批准号:17500096
- 负责人:
- 金额:$ 2.35万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2005
- 资助国家:日本
- 起止时间:2005 至 2007
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Due to the rapid growth of Internet, many graph structured data such as Web documents, electric power wiring diagram and chemical compounds have become accessible on Internet. The purpose of this research is to present efficient graph mining algorithms for finding characteristic graph patterns from lossless compressed graph structured data. Then, we give results of this research as follows.1. For tree structured data such as Web documents, we gave polynomial time learning algorithms on inductive inference and polynomial time learning algorithms in query learning model. Moreover, we presented tree mining algorithms for tree structured data.2. In order to give graph mining techniques for graph structured data, by giving a polynomial time matching algorithm and a polynomial time algorithm for solving the minimal language problem for TTSP graph patterns, which is one of knowledge representations of an Electric power wiring diagram, we showed that the class of TTSP graphs is inductively inf … More erable from positive data. In the query learning model, we showed that finite unions of TTSP graph patterns are polynomial time learnable from queries. Moreover, we presented a graph mining algorithm of finding characteristic graph patterns from a set of outerplanar graphs which is a data model of chemical compounds.3. Based on Lempel-Zip compression for strings, we proposed a lossless compression algorithm for huge trees. Through several experiments, we showed that the proposed algorithms have good performance. Moreover, based on XBW transformations for trees given by Ferragina, et. al. in 2005, we presented an XBW transformation of lossless compressed trees. Then, we presented an efficient search algorithm of finding all occurrences of a given path on XBW structures of lossless compressed trees.4. Based on an XBW transformation for huge lossless compressed trees, we proposed an XBW transformation for TTSP graphs. Moreover, we also presented an efficient search algorithm of finding all occurrences of a given path on XBW structures of TTSP graphs. Less
由于Internet的快速发展,Web文档、电力接线图、化学化合物等许多图形结构化数据都可以在Internet上访问。本研究的目的是提出一种有效的图挖掘算法,用于从无损压缩的图结构化数据中发现特征图模式。然后,我们给出了本研究的结果如下:1。对于Web文档等树状结构数据,给出了归纳推理的多项式时间学习算法和查询学习模型的多项式时间学习算法。此外,我们还提出了树状结构数据的树挖掘算法。为了给出图结构数据的图挖掘技术,我们给出了一个多项式时间匹配算法和求解TTSP图模式最小语言问题的多项式时间算法,TTSP图模式是电力接线图的知识表示之一,我们证明了TTSP图类是可以从正数据中归纳推断的。在查询学习模型中,我们证明了TTSP图模式的有限联合在查询中是多项式时间可学习的。此外,我们提出了一种从一组外平面图中寻找特征图模式的图挖掘算法,这是一种化合物的数据模型。基于字符串的Lempel-Zip压缩,提出了一种大型树的无损压缩算法。实验结果表明,本文提出的算法具有良好的性能。此外,在Ferragina等人2005年给出的树的XBW变换的基础上,我们提出了无损压缩树的XBW变换。然后,我们提出了一种高效的搜索算法,可以在无损压缩树的XBW结构上找到给定路径的所有出现点。在对大型无损压缩树进行XBW变换的基础上,提出了对TTSP图进行XBW变换的方法。此外,我们还提出了一种有效的搜索算法,可以在TTSP图的XBW结构上找到给定路径的所有出现点。少
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mining of Frequent Block Preserving Outerplanar Graph Structured Patterns
频繁块保留外平面图结构化模式的挖掘
- DOI:
- 发表时间:2008
- 期刊:
- 影响因子:0
- 作者:Y.;Sasaki;H.;Yamasaki;T.;Shoudai;T.;Uchida
- 通讯作者:Uchida
Polynomial Time Inductive Inference of Interval Graph Pattern Languages from Positive Data
正数据区间图模式语言的多项式时间归纳推理
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:K.;Inata;T.;Miyahara;H.;Ueda;K.;Takahashi;Hitoshi Yamasaki
- 通讯作者:Hitoshi Yamasaki
Discovery of Maximally Frequent Tag Tree Patterns with Height-Constrained Variables from Semistructured Web Documents
从半结构化 Web 文档中发现具有高度约束变量的最大频繁标签树模式
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:R.;Takami;Y.;Suzuki;T.;Uchida;T.;Shoudai;Y.;Nakamura;Yusuke Suzuki
- 通讯作者:Yusuke Suzuki
Polynomial Time Inductive Inference of TTSP Graph Languages from Positive Data
TTSP图语言从正数据的多项式时间归纳推理
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:R.Takami;Y.Suzuki;T.Uchida;T.Shoudai;and Y.Nakamura
- 通讯作者:and Y.Nakamura
Sequential Algorithm Based on a Lempel-Ziv Compression Scheme for Tree Structured Data
基于Lempel-Ziv压缩方案的树结构数据顺序算法
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:加藤 廣一郎;糸川 裕子;内田 智之;正代 隆義;中村 泰明
- 通讯作者:中村 泰明
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
UCHIDA Tomoyuki其他文献
Exact Learning of Primitive Formal Systems Defining Labeled Ordered Tree Languages via Queries
通过查询定义带标签有序树语言的原始形式系统的精确学习
- DOI:
10.1587/transinf.2018fcp0011 - 发表时间:
2019 - 期刊:
- 影响因子:0.7
- 作者:
UCHIDA Tomoyuki;MATSUMOTO Satoshi;SHOUDAI Takayoshi;SUZUKI Yusuke;MIYAHARA Tetsuhiro - 通讯作者:
MIYAHARA Tetsuhiro
An Efficient Pattern Matching Algorithm for Unordered Term Tree Patterns of Bounded Dimension
有界维无序词树模式的高效模式匹配算法
- DOI:
10.1587/transfun.e101.a.1344 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
SHOUDAI Takayoshi;MIYAHARA Tetsuhiro;UCHIDA Tomoyuki;MATSUMOTO Satoshi;SUZUKI Yusuke - 通讯作者:
SUZUKI Yusuke
UCHIDA Tomoyuki的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('UCHIDA Tomoyuki', 18)}}的其他基金
Development of memory-saving high-speed graph mining method for graph grammar-compressed data
针对图语法压缩数据的节省内存的高速图挖掘方法的开发
- 批准号:
15K00313 - 财政年份:2015
- 资助金额:
$ 2.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Data mining from large multimedia contents and its applications
大型多媒体内容的数据挖掘及其应用
- 批准号:
20500140 - 财政年份:2008
- 资助金额:
$ 2.35万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
- 批准号:
2348159 - 财政年份:2023
- 资助金额:
$ 2.35万 - 项目类别:
Standard Grant
GEM: Explorative Global-To Kinetic-Scale Modeling of Collisionless Shocks Using Physics-Informed Data Mining and Machine Learning
GEM:使用物理信息数据挖掘和机器学习对无碰撞冲击进行探索性全局到动力学尺度建模
- 批准号:
2225463 - 财政年份:2022
- 资助金额:
$ 2.35万 - 项目类别:
Standard Grant
Data Mining and Machine Learning Guided QM/MM and QM-Cluster Modeling of Enzymatic Reactions
数据挖掘和机器学习引导的酶反应 QM/MM 和 QM 簇建模
- 批准号:
10685949 - 财政年份:2022
- 资助金额:
$ 2.35万 - 项目类别:
Data Mining and Machine Learning for System Model Discovery and Applications
用于系统模型发现和应用的数据挖掘和机器学习
- 批准号:
RGPIN-2019-05163 - 财政年份:2022
- 资助金额:
$ 2.35万 - 项目类别:
Discovery Grants Program - Individual
Constructing a cloud-based battery management system to optimize lithium-ion battery system performance and lifespan using machine learning and data mining techniques
利用机器学习和数据挖掘技术构建基于云的电池管理系统,以优化锂离子电池系统性能和寿命
- 批准号:
566616-2021 - 财政年份:2022
- 资助金额:
$ 2.35万 - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Improved Infrastructure Assessments of Water Main Breaks Using Data Mining and Machine Learning Algorithms
使用数据挖掘和机器学习算法改进水管破裂的基础设施评估
- 批准号:
RGPIN-2018-04623 - 财政年份:2022
- 资助金额:
$ 2.35万 - 项目类别:
Discovery Grants Program - Individual
Data Mining and Machine Learning Guided QM/MM and QM-Cluster Modeling of Enzymatic Reactions
数据挖掘和机器学习引导的酶反应 QM/MM 和 QM 簇建模
- 批准号:
10400454 - 财政年份:2022
- 资助金额:
$ 2.35万 - 项目类别:
Constructing a cloud-based battery management system to optimize lithium-ion battery system performance and lifespan using machine learning and data mining techniques
利用机器学习和数据挖掘技术构建基于云的电池管理系统,以优化锂离子电池系统性能和寿命
- 批准号:
566616-2021 - 财政年份:2021
- 资助金额:
$ 2.35万 - 项目类别:
Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Improved Infrastructure Assessments of Water Main Breaks Using Data Mining and Machine Learning Algorithms
使用数据挖掘和机器学习算法改进水管破裂的基础设施评估
- 批准号:
RGPIN-2018-04623 - 财政年份:2021
- 资助金额:
$ 2.35万 - 项目类别:
Discovery Grants Program - Individual
Data Mining and Machine Learning for System Model Discovery and Applications
用于系统模型发现和应用的数据挖掘和机器学习
- 批准号:
RGPIN-2019-05163 - 财政年份:2021
- 资助金额:
$ 2.35万 - 项目类别:
Discovery Grants Program - Individual