Data Mining and Machine Learning for System Model Discovery and Applications

用于系统模型发现和应用的数据挖掘和机器学习

基本信息

  • 批准号:
    RGPIN-2019-05163
  • 负责人:
  • 金额:
    $ 1.68万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2021
  • 资助国家:
    加拿大
  • 起止时间:
    2021-01-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

Current day software infrastructures, cyber-physical systems, and Internet of Things (IoT) have become extremely complex for engineers to understand and debug. The risks are higher if the system is safety-critical. The increase in complexity of software systems presents a challenging problem of providing assurances of their reliable operation. Moreover, the lack of good quality behavioral description (both at macro and micro levels of abstraction) of these systems is one of the major problems. Due to their inherent complexity, and rapid evolution of software systems to meet the demands of clients, software applications and libraries are often released without documented specifications. Furthermore, lack of specifications negatively impacts the maintainability and reliability of systems. My research program, `Data Mining and Machine Learning for System Model Discovery and Applications', focuses on developing novel, faster, intelligent algorithms, and frameworks, and on seeing their broader impact through practical applications. The primary goal of my research program is to develop algorithms, models, and tools that infer the model/behavior of complex software systems considering them as a 'black box'. I propose to concentrate on model inference of complex software systems (both ubiquitous and large scale infrastructures). Specifically, I aim to infer system behavior, visualize it, and use it to make complex systems understandable, robust and reliable. Models developed as a part of this research program will not only infer complex system behavior model, but also incorporate the results into an experimentation framework for system safety and security. Consequently, users will benefit from the latest results at runtime enabling safe, secure, and resilient cyber-physical systems. The outcome of this work will be a set of open source software tools that will help engineers to build and analyze systems quicker and with fewer mistakes. This work will be relevant to both industry and academics. It will solve everyday problems faced by software engineers as well as extend our understanding of how to reason the complex behavior of software infrastructures. Further, this research will provide important and invaluable training to both graduate and undergraduate students. It will produce highly-qualified personnel with `data mining and machine learning skill-set' that is valuable and actively sought after by all the major software, hardware, and consulting companies in Canada. Lastly, this research program will develop strong partnerships between my group with industries and academia.
当今的软件基础设施,网络物理系统和物联网(IoT)对于工程师来说已经变得非常复杂,难以理解和调试。如果系统是安全关键型的,则风险更高。软件系统复杂性的增加提出了一个具有挑战性的问题,即如何保证其可靠运行。此外,这些系统缺乏高质量的行为描述(在宏观和微观抽象层面)是主要问题之一。由于其固有的复杂性,以及软件系统的快速发展,以满足客户的需求,软件应用程序和库往往没有文档化的规范发布。此外,缺乏规范对系统的可维护性和可靠性产生负面影响。我的研究项目,“数据挖掘和机器学习系统模型发现和应用”,专注于开发新颖,更快,智能算法和框架,并通过实际应用看到其更广泛的影响。我的研究计划的主要目标是开发算法,模型和工具,推断复杂软件系统的模型/行为,将它们视为“黑匣子”。我建议专注于复杂软件系统(包括无处不在的和大规模的基础设施)的模型推理。具体来说,我的目标是推断系统行为,将其可视化,并使用它来使复杂的系统变得可理解,健壮和可靠。作为该研究计划的一部分开发的模型不仅可以推断复杂的系统行为模型,还可以将结果纳入系统安全性和安全性的实验框架。因此,用户将受益于运行时的最新结果,从而实现安全、可靠和有弹性的网络物理系统。这项工作的成果将是一套开源软件工具,帮助工程师更快地构建和分析系统,减少错误。这项工作将与工业界和学术界有关。它将解决软件工程师面临的日常问题,并扩展我们对如何推理软件基础设施复杂行为的理解。此外,这项研究将提供重要的和宝贵的培训,研究生和本科生。它将培养出具有“数据挖掘和机器学习技能”的高素质人才,这些人才是加拿大所有主要软件,硬件和咨询公司所积极追求的。最后,这个研究项目将在我的团队与工业界和学术界之间建立牢固的伙伴关系。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Narayan, Apurva其他文献

Narayan, Apurva的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Narayan, Apurva', 18)}}的其他基金

Data Mining and Machine Learning for System Model Discovery and Applications
用于系统模型发现和应用的数据挖掘和机器学习
  • 批准号:
    RGPIN-2019-05163
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Data Mining and Machine Learning for System Model Discovery and Applications
用于系统模型发现和应用的数据挖掘和机器学习
  • 批准号:
    RGPIN-2019-05163
  • 财政年份:
    2020
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Data Mining and Machine Learning for System Model Discovery and Applications
用于系统模型发现和应用的数据挖掘和机器学习
  • 批准号:
    RGPIN-2019-05163
  • 财政年份:
    2019
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Data Mining and Machine Learning for System Model Discovery and Applications
用于系统模型发现和应用的数据挖掘和机器学习
  • 批准号:
    DGECR-2019-00320
  • 财政年份:
    2019
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Launch Supplement
Human intent recognition for smart vehicles
智能汽车的人类意图识别
  • 批准号:
    543732-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Engage Grants Program

相似国自然基金

基于Genome mining技术研究抑制表皮葡萄球菌生物膜形成的次级代谢产物
  • 批准号:
    21242003
  • 批准年份:
    2012
  • 资助金额:
    10.0 万元
  • 项目类别:
    专项基金项目

相似海外基金

BIGDATA: IA: Collaborative Research: Asynchronous Distributed Machine Learning Framework for Multi-Site Collaborative Brain Big Data Mining
BIGDATA:IA:协作研究:用于多站点协作大脑大数据挖掘的异步分布式机器学习框架
  • 批准号:
    2348159
  • 财政年份:
    2023
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Standard Grant
TRANSFORMATIVE TECHNOLOGIES - Mining for the best side of bioscience data, with machine learning
变革性技术 - 通过机器学习挖掘生物科学数据的最佳一面
  • 批准号:
    2890716
  • 财政年份:
    2023
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Studentship
developing and validating customized machine learning and data analytics methods for mining cricket
开发和验证采矿板球的定制机器学习和数据分析方法
  • 批准号:
    2885595
  • 财政年份:
    2023
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Studentship
SCH: New Advanced Machine Learning Framework for Mining Heterogeneous Ocular Data to Accelerate
SCH:新的先进机器学习框架,用于挖掘异构眼部数据以加速
  • 批准号:
    10601180
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
GEM: Explorative Global-To Kinetic-Scale Modeling of Collisionless Shocks Using Physics-Informed Data Mining and Machine Learning
GEM:使用物理信息数据挖掘和机器学习对无碰撞冲击进行探索性全局到动力学尺度建模
  • 批准号:
    2225463
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Standard Grant
SCH: New Advanced Machine Learning Framework for Mining Heterogeneous Ocular Data to Accelerate
SCH:新的先进机器学习框架,用于挖掘异构眼部数据以加速
  • 批准号:
    10665804
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
Data Mining and Machine Learning Guided QM/MM and QM-Cluster Modeling of Enzymatic Reactions
数据挖掘和机器学习引导的酶反应 QM/MM 和 QM 簇建模
  • 批准号:
    10685949
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
Mining Social Media Big Data for Toxicovigilance: Studying Substance Use via Natural Language Processing and Machine Learning Methods
挖掘社交媒体大数据进行毒物警戒:通过自然语言处理和机器学习方法研究药物使用
  • 批准号:
    10588855
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
Data Mining and Machine Learning for System Model Discovery and Applications
用于系统模型发现和应用的数据挖掘和机器学习
  • 批准号:
    RGPIN-2019-05163
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Discovery Grants Program - Individual
Constructing a cloud-based battery management system to optimize lithium-ion battery system performance and lifespan using machine learning and data mining techniques
利用机器学习和数据挖掘技术构建基于云的电池管理系统,以优化锂离子电池系统性能和寿命
  • 批准号:
    566616-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 1.68万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了