Research on implementations of computer-intensive selection methods for regularized statistical models
正则化统计模型的计算机密集型选择方法的实现研究
基本信息
- 批准号:17500189
- 负责人:
- 金额:$ 1.96万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2005
- 资助国家:日本
- 起止时间:2005 至 2007
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
(1) In nonparametric estimation of term structures of interest rates from traded bond data, it is empirically well-known that approximating forward rate often yields better result. The problem of this approach is, however, that the use of generalized cross-validation cannot be justified to choose regularization parameters. In this project, we established a version of generalized information criteria (GIC) that holds theoretical validity in the determination of regularization parameter. (2) We compared the performance of various types of GARCH models and multivariate GARCH models in terms of the coherency of downside risks, especially Value at Risk (VaR). Given the parameters estimated, we performed prediction simulation and compared the empirical exceedance rate with nominal size through a binomial test. Our conclusion is that Dynamic Conditional Correlation model performs best, together with its parsimonious parametric form. (3) Estimation of unobserved components time series models with intervention terms are studied. Data come from animal dose administration testing. These are time series data such as systolic blood pressure, diastolic blood pressure, heart rate and so on. We considered a time series model to decompose observation into trend, stationary autoregressive part and an exponential type intervention term, which enabled us to estimate acute toxicity through model selection. (4) Aiming disclosure of the research results to the public, online learning system on the web based time series analysis software was studied.
(1)在从交易债券数据中对利率期限结构进行非参数估计时,根据经验众所周知,近似远期利率通常会得到更好的结果。然而,这种方法的问题是,使用广义交叉验证不能证明选择正则化参数是合理的。在这个项目中,我们建立了一个版本的广义信息准则(GIC),它在确定正则化参数时具有理论上的有效性。(2)比较了不同类型的GARCH模型和多元GARCH模型在下行风险,特别是风险价值(VaR)的一致性方面的表现。在给定估计参数的情况下,我们进行了预测模拟,并通过二项检验将经验超越率与名义规模进行了比较。我们的结论是,动态条件相关模型及其简约的参数形式表现最好。(3)研究了带干扰项的不可观测分量时间序列模型的估计问题。数据来自动物剂量管理测试。这些是时间序列数据,如收缩压、舒张压、心率等。我们考虑了一个时间序列模型,将观察分解为趋势、平稳自回归部分和指数型干预项,使我们能够通过模型选择来估计急性毒性。(4)以向公众公开研究成果为目标,研究了基于时间序列分析软件的网络在线学习系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Estimating term structure using nonlinear splines: A penalized likelihood approach
- DOI:
- 发表时间:2005-12
- 期刊:
- 影响因子:0
- 作者:Y. Kawasaki;T. Ando
- 通讯作者:Y. Kawasaki;T. Ando
Common intervention analysis in multivariate nonstationary time series
多元非平稳时间序列中的常见干预分析
- DOI:
- 发表时间:2007
- 期刊:
- 影响因子:0
- 作者:Kawasaki Y.;Koga T.and Kanefuji K.
- 通讯作者:Koga T.and Kanefuji K.
Statistical courseware with synchronized web-based statistical analysis system
具有同步网络统计分析系统的统计课件
- DOI:
- 发表时间:2008
- 期刊:
- 影响因子:0
- 作者:Kanefuji K.;Kawasaki Y.;Sato S.;Sumiya T. and Ochi Y.
- 通讯作者:Sumiya T. and Ochi Y.
An empirical comparison of multivariate OARCH models based on intraday Value at Risk
基于日内风险价值的多元 OARCH 模型的实证比较
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:Morimoto;T.;Kawasaki;Y.
- 通讯作者:Y.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KAWASAKI Yoshinori其他文献
A Study of Safe Society' and The Media's Role to Promote Safety', No2
《安全社会研究》和媒体在促进安全方面的作用》,第 2 期
- DOI:
- 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
WATANABE Takesato;YAMAGUCHI Koji;KUDO Kazuo;KAWASAKI Yoshinori;NOHARA Hitoshi - 通讯作者:
NOHARA Hitoshi
A Study of Safe Society' and The Media's Role to Promote 'Safety', No1
“安全社会”研究和媒体在促进“安全”方面的作用,第 1 期
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
WATANABE Takesato;YAMAGUCHI Koji;KUDO Kazuo;KAWASAKI Yoshinori;NOHARA Hitoshi - 通讯作者:
NOHARA Hitoshi
Simultaneous approximation of polynomials and derivatives and their applications to neural networks
多项式和导数的同时逼近及其在神经网络中的应用
- DOI:
- 发表时间:
2008 - 期刊:
- 影响因子:0
- 作者:
WATANABE Takesato;YAMAGUCHI Koji;KUDO Kazuo;KAWASAKI Yoshinori;NOHARA Hitoshi;Yoshifusa Ito, - 通讯作者:
Yoshifusa Ito,
Seidokasareru Shimbunkisha (Newspaper Reporters in the Institutionalized System)
Seidokasareru Shimbunkisha(制度化系统中的报纸记者)
- DOI:
- 发表时间:
2006 - 期刊:
- 影响因子:0
- 作者:
伊藤嘉房;泉寛幸;KUDO Kazuo;KAWASAKI Yoshinori - 通讯作者:
KAWASAKI Yoshinori
KAWASAKI Yoshinori的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KAWASAKI Yoshinori', 18)}}的其他基金
Statistical modeling based on multiple time series with various time resolution
基于不同时间分辨率的多个时间序列的统计建模
- 批准号:
21500287 - 财政年份:2009
- 资助金额:
$ 1.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Regularization for Nonlinear Panel Models, Estimation of Heterogeneous Taxable Income Elasticities, and Conditional Influence Functions
非线性面板模型的正则化、异质应税收入弹性的估计和条件影响函数
- 批准号:
2242447 - 财政年份:2023
- 资助金额:
$ 1.96万 - 项目类别:
Standard Grant
General Theory of Implicit Regularization
隐式正则化的一般理论
- 批准号:
EP/Y028333/1 - 财政年份:2023
- 资助金额:
$ 1.96万 - 项目类别:
Research Grant
Condensation and Prediction Acceleration for Deep Learning Through Low-rank Regularization and Adaptive Proximal Methods
通过低秩正则化和自适应近端方法进行深度学习的压缩和预测加速
- 批准号:
23K19981 - 财政年份:2023
- 资助金额:
$ 1.96万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Tensor and Regularization Methods for (Semantic) Deep Learning: Application to Robotic Perception
(语义)深度学习的张量和正则化方法:在机器人感知中的应用
- 批准号:
RGPIN-2018-06134 - 财政年份:2022
- 资助金额:
$ 1.96万 - 项目类别:
Discovery Grants Program - Individual
Regularization and approximation: statistical inference, model selection, and large data
正则化和近似:统计推断、模型选择和大数据
- 批准号:
RGPIN-2021-02618 - 财政年份:2022
- 资助金额:
$ 1.96万 - 项目类别:
Discovery Grants Program - Individual
CAREER: Statistical Learning from a Modern Perspective: Over-parameterization, Regularization, and Generalization
职业:现代视角下的统计学习:过度参数化、正则化和泛化
- 批准号:
2143215 - 财政年份:2022
- 资助金额:
$ 1.96万 - 项目类别:
Continuing Grant
Efficient and robust inference for regularization with regular and functional data
使用常规数据和函数数据进行高效且稳健的正则化推理
- 批准号:
RGPIN-2016-06366 - 财政年份:2022
- 资助金额:
$ 1.96万 - 项目类别:
Discovery Grants Program - Individual
Use of estimating functions to improve sequential adaptive decisions and dynamic regularization
使用估计函数来改进顺序自适应决策和动态正则化
- 批准号:
RGPIN-2021-03747 - 财政年份:2022
- 资助金额:
$ 1.96万 - 项目类别:
Discovery Grants Program - Individual
Exploration of nonlinear solutions dicribing wave turbulence using regularization
使用正则化描述波湍流的非线性解的探索
- 批准号:
22K03897 - 财政年份:2022
- 资助金额:
$ 1.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Regularization Techniques for Optimal Transportation
最佳运输的正则化技术
- 批准号:
567921-2022 - 财政年份:2022
- 资助金额:
$ 1.96万 - 项目类别:
Postgraduate Scholarships - Doctoral