Study on the fusion products and crystalbases of level-zero representations of quantum affine algebras

量子仿射代数零级表示的融合积和晶基研究

基本信息

  • 批准号:
    17540008
  • 负责人:
  • 金额:
    $ 2.35万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2005
  • 资助国家:
    日本
  • 起止时间:
    2005 至 2007
  • 项目状态:
    已结题

项目摘要

Let g be an affine Lie algebra over the complex numbers, and let λ be a level-zero integral weight that is a sum of level-zero fundamental weights π_I, I=1, . N, with repetitions allowed. We consider the quantum Weyl module W_{q} (λ) over the quantum affine algebra U_{q} (g) associated to certain Drinfeld polynomials corresponding to λ. It is known that the classical limit (I. e., "q=1" limit) of W_{q} (λ) becomes the Weyl module W (λ) over the affine Lie algebra g. Also, it is known that the Weyl module W (λ) is isomorphic (as a module over the Current algebra corresponding to g) to a fusion product of the Weyl modules W (π_I), I=1, . N.In our previous works, we showed that the crystal B (λ)_{cl} of Lakshmibai-Seshadri paths (modulo the null root δ of g) of shape λ is isomorphic as a crystal to the crystal basis of the quantum Weyl module W_{q} (λ). Moreover, we showed that the crystal B (λ)_{cl} is isomorphic as a crystal to a tensor product B of the crystals B (π_I), I=1, ., nIn our series of works from 2005 to 2007, we defined a certain (nonnegative) integer-valued function (which we call the degree function) on the crystal B (λ)_{cl} above, and proved that this degree function can be identified (through the isomorphism between B (λ)_{cl} and B) with the "energy function" on B, which arose from the study of solvable lattice models in statistical mechanics. In particular, by restricting ourselves to the case of affine Lie algebras of type A, we obtain a description of Kostka polynomials in terms of Lakshmibai-Seshadri paths.
Let g be an affine Lie algebra over the complex numbers, and let λ be a level-zero integral weight that is a sum of level-zero fundamental weights π_I, I=1, . N, with repetitions allowed. We consider the quantum Weyl module W_{q} (λ) over the quantum affine algebra U_{q} (g) associated to certain Drinfeld polynomials corresponding to λ. It is known that the classical limit (I. e., "q=1" limit) of W_{q} (λ) becomes the Weyl module W (λ) over the affine Lie algebra g. Also, it is known that the Weyl module W (λ) is isomorphic (as a module over the Current algebra corresponding to g) to a fusion product of the Weyl modules W (π_I), I=1, . N.In our previous works, we showed that the crystal B (λ)_{cl} of Lakshmibai-Seshadri paths (modulo the null root δ of g) of shape λ is isomorphic as a crystal to the crystal basis of the quantum Weyl module W_{q} (λ). Moreover, we showed that the crystal B (λ)_{cl} is isomorphic as a crystal to a tensor product B of the crystals B (π_I), I=1, ., nIn our series of works from 2005 to 2007, we defined a certain (nonnegative) integer-valued function (which we call the degree function) on the crystal B (λ)_{cl} above, and proved that this degree function can be identified (through the isomorphism between B (λ)_{cl} and B) with the "energy function" on B, which arose from the study of solvable lattice models in statistical mechanics. In particular, by restricting ourselves to the case of affine Lie algebras of type A, we obtain a description of Kostka polynomials in terms of Lakshmibai-Seshadri paths.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Crystal of Lakshmibai-Seshadri paths associated to an integral weight of level zero for an affine Lie algebra
与仿射李代数零级积分权重相关的 Lakshmibai-Seshadri 路径晶体
Crystal Base Elements of an Extremal Weight Module Fixed by a Diagram Automorphism
  • DOI:
    10.1007/s10468-005-0234-x
  • 发表时间:
    2005-12
  • 期刊:
  • 影响因子:
    0.6
  • 作者:
    S. Naito;Daisuke Sagaki
  • 通讯作者:
    S. Naito;Daisuke Sagaki
Crystal base elements of an extremal weight module fixed by a diagram automorphism II : case of affine Lie algebras
由图自同构固定的极值权模块的晶体基元 II :仿射李代数的情况
Path model for a level-zero extremal weight module over a quantum affine algebra II
量子仿射代数 II 上零级极值权模块的路径模型
  • DOI:
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S.Naito;D.Sagaki
  • 通讯作者:
    D.Sagaki
Construction of perfect crystals conjecturally corresponding to Kirillov-Reshetikhin modules over twisted quantum affine algebras
构造完美晶体,推测对应于扭曲量子仿射代数上的基里洛夫-列谢蒂欣模块
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

NAITO Satoshi其他文献

NAITO Satoshi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('NAITO Satoshi', 18)}}的其他基金

Starting up the functional ribosome-omics (ribosomomics): an approach from the translation arrest
启动功能性核糖体组学(核糖体组学):一种来自翻译停滞的方法
  • 批准号:
    16K14746
  • 财政年份:
    2016
  • 资助金额:
    $ 2.35万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Realization of the crystal bases of level-zero representations of quantum affine algebras as algebraic cycles
量子仿射代数零级表示的晶体基作为代数循环的实现
  • 批准号:
    20540006
  • 财政年份:
    2009
  • 资助金额:
    $ 2.35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Molecular Mechanism of Nascent Peptide-Mediated Translation Arrest Involved in Feedback Regulation of Methionine Biosynthesis
新生肽介导的翻译阻滞参与蛋氨酸生物合成反馈调节的分子机制
  • 批准号:
    20370016
  • 财政年份:
    2008
  • 资助金额:
    $ 2.35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Regulation of RNA degradation by RNase
RNase 调节 RNA 降解
  • 批准号:
    17026001
  • 财政年份:
    2005
  • 资助金额:
    $ 2.35万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
Molecular mechanism of translation arrest and mRNA degradation in cystathionine gamma-synthase, the key-step enzyme of methionine biosynthesis.
胱硫醚γ-合酶(甲硫氨酸生物合成的关键步骤酶)翻译停滞和 mRNA 降解的分子机制。
  • 批准号:
    16370016
  • 财政年份:
    2004
  • 资助金额:
    $ 2.35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Study on the path models for extremal weight modules over a quantum affine algebra
量子仿射代数极值权模路径模型研究
  • 批准号:
    14540006
  • 财政年份:
    2002
  • 资助金额:
    $ 2.35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Molecular genetic studies of control of mRNA stability in the gene for the key enzyme of methionine biosynthesis
蛋氨酸生物合成关键酶基因mRNA稳定性控制的分子遗传学研究
  • 批准号:
    13440233
  • 财政年份:
    2001
  • 资助金额:
    $ 2.35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Mechanism of response of seed storage protein gene expression to nutritional signals
种子贮藏蛋白基因表达对营养信号的响应机制
  • 批准号:
    12138201
  • 财政年份:
    2000
  • 资助金额:
    $ 2.35万
  • 项目类别:
    Grant-in-Aid for Scientific Research on Priority Areas
Molecular mechanism of regulation of methionine biosynthesis by mRNA stability : Studies using mto1 mutants of Arabidopsis.
通过 mRNA 稳定性调节蛋氨酸生物合成的分子机制:使用拟南芥 mto1 突变体进行的研究。
  • 批准号:
    11440230
  • 财政年份:
    1999
  • 资助金额:
    $ 2.35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B).
Molecular Biological Studies on the Regulation of MeEthionine Biosynthesis Using an Arabidopsis thaliana Mutant.
使用拟南芥突变体调节甲硫氨酸生物合成的分子生物学研究。
  • 批准号:
    09440262
  • 财政年份:
    1997
  • 资助金额:
    $ 2.35万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)

相似海外基金

Geometric and combinatorial study of level-zero representation theory of quantum affine algebras
量子仿射代数零级表示论的几何与组合研究
  • 批准号:
    16K17577
  • 财政年份:
    2016
  • 资助金额:
    $ 2.35万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Geometry of semi-infinite flag varieties and level-zero representation theory of quantum affine algebras
半无限旗簇几何与量子仿射代数零级表示论
  • 批准号:
    26887002
  • 财政年份:
    2014
  • 资助金额:
    $ 2.35万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了