Beneath on analytic properties ofvarious zeta-functions
下面是各种 zeta 函数的解析性质
基本信息
- 批准号:17540022
- 负责人:
- 金额:$ 2.39万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:2005
- 资助国家:日本
- 起止时间:2005 至 2007
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In this research, we succeeded to give a new and the most general formulation of the modular relation by using Meijer's G-function and the Fox H-function as an integral kernel. In this way, we can understand more clearly the role of the functional equations of zeta functions which appeared in many previous works. Our formulation also enables us to generalize many arithmetical formulas in wider context. For example, we generalized Davenport-Segal's arithmetical Fourier series and got interesting examples. We also gave a new proof of the functional equation of the Hurwitz zeta-function and, inspired by the work of Espinosa-Moll and Mikolas, we derived many arithmetically interesting integral formulas. We are now writing a book on our results on the general modular relations.We are also interested in multiple zeta functions. Especially for double zeta function of Euler-Zagier type, we gave, by employing Krazel's theory of double exponential sum, a non-trivial upper bound in the so-called "critical strip". This is a meaningful improvement of previously known results. We can expect that our result has many applications in the theory of arithmetical functions. We also improved the upper bounds for the triple zeta functions in the critical strip. As another type of zeta functions, we investigated zeta-functions associated with polynomials. We gave the criterion of the possibility of analytic continuation and constructed an example of zeta-function with a natural boundary.
In this research, we succeeded to give a new and the most general formulation of the modular relation by using Meijer's G-function and the Fox H-function as an integral kernel. In this way, we can understand more clearly the role of the functional equations of zeta functions which appeared in many previous works. Our formulation also enables us to generalize many arithmetical formulas in wider context. For example, we generalized Davenport-Segal's arithmetical Fourier series and got interesting examples. We also gave a new proof of the functional equation of the Hurwitz zeta-function and, inspired by the work of Espinosa-Moll and Mikolas, we derived many arithmetically interesting integral formulas. We are now writing a book on our results on the general modular relations.We are also interested in multiple zeta functions. Especially for double zeta function of Euler-Zagier type, we gave, by employing Krazel's theory of double exponential sum, a non-trivial upper bound in the so-called "critical strip". This is a meaningful improvement of previously known results. We can expect that our result has many applications in the theory of arithmetical functions. We also improved the upper bounds for the triple zeta functions in the critical strip. As another type of zeta functions, we investigated zeta-functions associated with polynomials. We gave the criterion of the possibility of analytic continuation and constructed an example of zeta-function with a natural boundary.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sums involving the Hurwitz zeta-function values-
涉及 Hurwitz zeta 函数值的总和 -
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:S.Kanemitsu;A.Schinzel;Y.Tanigawa
- 通讯作者:Y.Tanigawa
Evaluation of Spannenintegral of the product of zeta function
Zeta 函数乘积的 Spannen 积分评估
- DOI:
- 发表时间:2008
- 期刊:
- 影响因子:0
- 作者:S. Kanemitsu;Y. Tanigawa and J. Zhang
- 通讯作者:Y. Tanigawa and J. Zhang
Some number theoretic application of a general modular relation
一般模关系的一些数论应用
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:S. Kanemitsu;Y. Tanigawa;and H. Tsukada
- 通讯作者:and H. Tsukada
Bounds for double zeta function
双 zeta 函数的界限
- DOI:
- 发表时间:2006
- 期刊:
- 影响因子:0
- 作者:S. Kanemitsu;Y. Tanigawa;and H. Tsukada;I. Kiuchi and Y. Tanigawa
- 通讯作者:I. Kiuchi and Y. Tanigawa
Crystal Symmetry viewed as Zeta Symmetry
晶体对称性被视为 Zeta 对称性
- DOI:
- 发表时间:2005
- 期刊:
- 影响因子:0
- 作者:S. Kanemitsu;Y. Tanigawa;H. Tsukada and M. Yoshimoto
- 通讯作者:H. Tsukada and M. Yoshimoto
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TANIGAWA Yoshio其他文献
TANIGAWA Yoshio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TANIGAWA Yoshio', 18)}}的其他基金
On analytic behaviour of zeta-function and its applications to the arithmetical error term
Zeta 函数的解析行为及其在算术误差项中的应用
- 批准号:
24540015 - 财政年份:2012
- 资助金额:
$ 2.39万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analytic properties of the error term arising from the arithmetical problems
算术问题产生的误差项的解析性质
- 批准号:
21540012 - 财政年份:2009
- 资助金额:
$ 2.39万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research on the special values of various zeta functions
各种zeta函数特殊值的研究
- 批准号:
14540021 - 财政年份:2002
- 资助金额:
$ 2.39万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Sum formulas for arithmetical functions and mean value theorem for the zeta functions
算术函数的求和公式以及 zeta 函数的中值定理
- 批准号:
11640022 - 财政年份:1999
- 资助金额:
$ 2.39万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Estimate of the sum of arithmetical functions and its applications to L functions
算术函数之和的估计及其在 L 函数中的应用
- 批准号:
09640026 - 财政年份:1997
- 资助金额:
$ 2.39万 - 项目类别:
Grant-in-Aid for Scientific Research (C)