MANY-FACETED ATTACK ON THE COMPLEX GINZBURG-LANDAU EQUATION

对复杂 GINZBURG-LANDAU 方程的多方面攻击

基本信息

  • 批准号:
    17540172
  • 负责人:
  • 金额:
    $ 1.31万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2005
  • 资助国家:
    日本
  • 起止时间:
    2005 至 2007
  • 项目状态:
    已结题

项目摘要

1) Initial-boundary value problems for the complex Ginzburg-Landau equation on a bounded domain is discussed when we take the initial values from the Lebesgue space L-p (p>2). As a corollary we can reformulate the result of Ginibre-Velo (1997) in which the initial values are taken from the Sobolev space H-1. In addition we can weaken the restriction on the exponents of the power of the nonlinear term if we take the initial values from H-m (m is a integer greater than or equal to 2). The stationary problems are also considered. (2) We have presented a new sufficient condition which guarantees the quasi-m-accretivity of Schroedinger operators with singular first-order coefficients. The result is regarded as an improvement of that by late Professor Tosio Kato. (3) We have obtained the estimates of the eigenfunctions e_n of the Laplace operator on a bounded domain. | (e_n) (x) | is bounded by the constant multiple of the eigenvalue to the power of N/4. This exponent with N=1 appears in the estimates of the eigenfunctions of the Schroedinger operator of the one-dimensional harmonic ocsilltor.
1)讨论了有界域上复Ginzburg-Landau方程的初边值问题,其初值取自勒贝格空间L-p(p>2)。作为推论,我们可以重新表述Ginibre-Velo(1997)的结果,其中的初值取自Sobolev空间H-1。此外,如果取H-m(m是大于或等于2的整数)的初值,则可以减弱对非线性项的幂的指数的限制。文中还考虑了定常问题。(2)给出了一阶奇异系数薛定谔算子的拟m-增生性的一个新的充分条件。这一结果被认为是已故加藤东彦教授的改进。(3)得到了有界域上Laplace算子的本征函数e_n的估计。|(E_N)(X)|由本征值的N/4次方的常数倍数所限定。这个N=1的指数出现在一维谐振子的薛定谔算符的本征函数的估计中。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Quasi-m-accretivity of Schroedinger operators with singular first-order coefficients
具有奇异一阶系数的薛定谔算子的拟m-累加性
SMOOTHING EFFECT FOR THE CMPLEX GINZBURG-LANDAU EQUATION (GENERAL CASE
复数 GINZBURG-LANDAU 方程的平滑效应(一般情况)
The complex Ginzburg-Landau equation(an improvement)
复数Ginzburg-Landau方程(改进)
Semilinear elliptic problems associated with the complex Ginzburg-Landauequation
与复杂的 Ginzburg-Landaue 方程相关的半线性椭圆问题
SEMILINEAR ELLIPTIC PROBLEMS ASSOCIATED WITH THE COMPLEX GINZBURG-LANDAU EQUATION
与复GINZBURG-LANDAU方程相关的半线性椭圆问题
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

OKAZAWA Noboru其他文献

OKAZAWA Noboru的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('OKAZAWA Noboru', 18)}}的其他基金

Evolution equations and their resolvent problems
进化方程及其解决的问题
  • 批准号:
    20540190
  • 财政年份:
    2008
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
DEPELOPMENTS IN OPERATOR THEORY TOWARDS EVOLUTION EQUATIONS
演化方程算子理论的发展
  • 批准号:
    14540187
  • 财政年份:
    2002
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
THE COMPLEX GINZBURG-LANDAU EQUATION
复杂的 GINZBURG-LANDAU 方程
  • 批准号:
    11640185
  • 财政年份:
    1999
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Study on optimum distributed arrangement of renewable energy using smoothing effect by wide area interconnection
利用广域联网平滑效应的可再生能源优化分布研究
  • 批准号:
    16K06981
  • 财政年份:
    2016
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A study on an estimate of solutions of Helmholtz equation and the smoothing effect of solutions of corresponding time-dependent problems
亥姆霍兹方程解的估计及相应瞬态问题解的平滑效应研究
  • 批准号:
    16K05243
  • 财政年份:
    2016
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
STRACTURE OF PARTIAL DIFFERENTIAL EQUATIONS BY SMOOTHING EFFECT
基于平滑效应的偏微分方程的结构
  • 批准号:
    13440040
  • 财政年份:
    2001
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Smoothing effect of Partial differential equations
偏微分方程的平滑效果
  • 批准号:
    11440038
  • 财政年份:
    1999
  • 资助金额:
    $ 1.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B).
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了