Study of algorithm for the construction of solutions in inverse problems and its visualization

反问题解的构造算法及其可视化研究

基本信息

  • 批准号:
    18540110
  • 负责人:
  • 金额:
    $ 2.44万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2006
  • 资助国家:
    日本
  • 起止时间:
    2006 至 2007
  • 项目状态:
    已结题

项目摘要

We succeeded to put reproduction kernel theory and regularization theory together Using our new method we can solve some inverse problems which have not been able to be solved historically. (1) The inverse problem of heat conduction is known as a difficult problem historically. We applied Tikhonov regularization for this inverse problem and gave some concrete algorithms for solving it. And we confirmed the effectiveness of those algorithms by numerical experiments. In addition, I contrived visual of the solution to clarify utility of this manner of solving. We think that it may be said that the inverse problem of the heat conduction has been settled by these our contributions. (2) We made the calculation environment of the multiple-precision arithmetic from the both sides of hardware and software. And we applied these implements for development of computation algorithm on real inversion of Laplace transform. Furthermore we verified that we can obtain numerical solutions of this typical ill-posed problem with satisfactory accuracy by our new method. (3) We verified theoretically and numerically that the usage of sinc function and Fredholm integral equation of the second kind are very effective for real inversion of Laplace transform. And we demonstrated numerically that double exponential method is very powerful for solving this ill-posed problem. (4) We pointed out theoretically that singular value decomposition is available and effective for solving real inverse problem of Laplace transform. And we showed that multiple-precision arithmetic is essential for this calculation. Furthermore we established this method and necessary numerical tables and applied for a patent of this study in conjunction with Kyoto University.
我们成功地将再现核理论和正则化理论结合在一起,利用我们的新方法可以解决一些历史上无法解决的逆问题。(1)热传导逆问题历来被认为是一个难题。将Tikhonov正则化应用于该反问题,并给出了求解该反问题的具体算法。并通过数值实验验证了算法的有效性。此外,我设计了可视化的解决方案,以阐明这种解决方式的效用。我们认为,可以说,我们的这些贡献已经解决了热传导的逆问题。(2)从硬件和软件两方面给出了多精度算法的计算环境。并应用这些工具开发了拉普拉斯变换实逆变换的计算算法。进一步验证了该方法能以满意的精度得到这一典型病态问题的数值解。(3)从理论上和数值上验证了sinc函数和第二类Fredholm积分方程的使用对于拉普拉斯变换的实逆变换是非常有效的。我们用数值证明了双指数法对于求解这个不适定问题是非常有效的。(4)从理论上指出奇异值分解是求解拉普拉斯变换实反问题的有效方法。我们证明了多精度算法在这个计算中是必不可少的。此外,我们建立了该方法和必要的数值表,并与京都大学联合申请了本研究的专利。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Numerical Real Inversion Formulas of the Laplace Transform by using a Fredholm integral equation of the second kind
基于第二类Fredholm积分方程的拉普拉斯变换数值实数反演公式
Numerieal Real Inversion Formulas of the Laplace Transform by Usting the Sinc Functions
使用Sinc函数的拉普拉斯变换的数值实数反演公式
Real inversion of the Laplace transform in numerical singular value decomposition
数值奇异值分解中拉普拉斯变换的实数反演
  • DOI:
  • 发表时间:
    2008
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fujiwara;Hiroshi ; Matsuura;Tsutomu;Saitoh;Saburou. Sawano Yosihiro
  • 通讯作者:
    Saburou. Sawano Yosihiro
Analytical and Numerical Solutions of the Inhomogeneous Heat Equation
非均匀热方程的解析解和数值解
Representations of Inverse Funetions by the Integral Transform with the Sign Kernel
逆函数的符号核积分变换表示
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MATSUURA Tsutomu其他文献

MATSUURA Tsutomu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MATSUURA Tsutomu', 18)}}的其他基金

A historical Studies of War Crime and
战争罪和战争罪的历史研究
  • 批准号:
    23531018
  • 财政年份:
    2011
  • 资助金额:
    $ 2.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Applications of Reproducing kernel theory and its new development in engineering
再现核理论的应用及其工程新进展
  • 批准号:
    23540121
  • 财政年份:
    2011
  • 资助金额:
    $ 2.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Applications of the reproducing kernel theory to inverse problems and their engineering approach
再生核理论在反问题中的应用及其工程方法
  • 批准号:
    20540105
  • 财政年份:
    2008
  • 资助金额:
    $ 2.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Deepening and application of Sobolev inequality studies using reproducing kernel theory
再生核理论索博列夫不等式研究的深化及应用
  • 批准号:
    17K05374
  • 财政年份:
    2017
  • 资助金额:
    $ 2.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Applications of reproducing kernel theory -development and implementation for engineering and medical problems-
再现核理论的应用-工程和医学问题的开发和实施-
  • 批准号:
    17K05357
  • 财政年份:
    2017
  • 资助金额:
    $ 2.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Applications of Reproducing kernel theory and its new development in engineering and medical science
再现核理论的应用及其在工程和医学中的新进展
  • 批准号:
    26400192
  • 财政年份:
    2014
  • 资助金额:
    $ 2.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Applications of Reproducing kernel theory and its new development in engineering
再现核理论的应用及其工程新进展
  • 批准号:
    23540121
  • 财政年份:
    2011
  • 资助金额:
    $ 2.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Applications of the reproducing kernel theory to inverse problems and their engineering approach
再生核理论在反问题中的应用及其工程方法
  • 批准号:
    20540105
  • 财政年份:
    2008
  • 资助金额:
    $ 2.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study of Green function of higher order / fractional order differential equations from a viewpoint of a reproducing kernel theory
从再生核理论的角度研究高阶/分数阶微分方程的格林函数
  • 批准号:
    17540175
  • 财政年份:
    2005
  • 资助金额:
    $ 2.44万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了