Study of Green function of higher order / fractional order differential equations from a viewpoint of a reproducing kernel theory

从再生核理论的角度研究高阶/分数阶微分方程的格林函数

基本信息

  • 批准号:
    17540175
  • 负责人:
  • 金额:
    $ 1.54万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2005
  • 资助国家:
    日本
  • 起止时间:
    2005 至 2006
  • 项目状态:
    已结题

项目摘要

(2005) We constructed Green functions under various boundary conditions and showed that the Green functions are reproducing kernels of suitable Hilbert spaces. Based on this fact, we succeeded in calculation of the best constant and the best function for Sobolev inequality by examining a diagonal value of Green function in a detailed manner.We calculated the best constant of a Sobolev inequality corresponding to several boundary value problems including Diriclet type, Neumann type and the periodic type conditions for a string bending problem. If the corresponding eigenvalue problem has a nonpositive eigenvalue, we constitute a generalied Green function by the so-called symmetric orthogonalization method by imposing the solvability and orthogonality condition to the boundary value problem.(2006) We calculated concretely the best constant of a Sobolev inequality corresponding to boundary value problems for 2M-th order differential operator, which contains clumped type, Diriclet type, Neumann type, a free end, a periodic type condition. In particular, the best constant of Dirichlet, Neumann and periodic boundary condition is found and expressed by means of Bernoulli polynomials and Riemann zeta function. This result give a variational meaning of Riemann zeta function. In the other 2 cases, we calculated the best constant of a Sobolev inequality by examining a diagonal value of Green function.
(2005)我们构造了不同边界条件下的格林函数,证明了格林函数是合适的Hilbert空间的再生核。基于这一事实,我们通过详细研究格林函数的对角值,成功地计算了Sobolev不等式的最佳常数和最佳函数,并计算了Sobolev不等式的最佳常数对应于几个边值问题,包括Diriclet型、Neumann型和弦弯曲问题的周期型条件。如果相应的特征值问题有一个非正的特征值,我们通过对边值问题施加可解性和正交性条件,用所谓的对称正交化方法构造一个广义格林函数。(2006)我们具体地计算了2m阶微分算子边值问题对应的Sobolev不等式的最佳常数,它包含块状型、Diriclet型、Neumann型、自由端、周期型条件。特别地,求出了Dirichlet、Neumann和周期边界条件的最佳常数,并用Bernoulli多项式和Riemann Zeta函数表示。这一结果给出了Riemann Zeta函数的变分意义。在另外两种情况下,我们通过检查格林函数的对角值来计算Soblev不等式的最佳常数。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
RIEMANN ZETA FUNCRION, BERNOULLI POLYNOMIALS AND THE BEST CONSTANT OF SOBOLEW INEQUALITY
黎曼ZETA函数、伯努利多项式及索博勒夫不等式的最佳常数
RIEMANN ZETA FUNCTION, BERNOULLI POLYNOMIALS AND THE BEST CONSTANT OF SOBOLEV INEQUALITY
黎曼ZETA函数、伯努利多项式和索博列夫不等式的最佳常数
The best constant of Sobolev inequality which correspond to a bending problem of a string with periodic boundary condition
具有周期性边界条件的弦弯曲问题的Sobolev不等式的最佳常数
GREEN FUNCTION FOR BOUNDARY VALUE PROBLEM OF 2M-TH ORDER LINEAR ORDINARY DIFFERENTIAL EQUATIONS WITH OPEN BOUNDARY CONDITION
开边界条件下2M阶线性常微分方程边值问题的绿色函数
GREEN FUNCTION FOR BOUNDARY VALUE PLOBREM OF 2M-YH ORDER LINEAR ORDINARY DIFFRRENTIAL EQUATION WITH OPEN BOUNDARY CONDITION
开边界条件下2M-YH阶线性常微分方程边值方程的绿函数
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TAKEMURA Kazuo其他文献

TAKEMURA Kazuo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TAKEMURA Kazuo', 18)}}的其他基金

Deepening and application of Sobolev inequality studies using reproducing kernel theory
再生核理论索博列夫不等式研究的深化及应用
  • 批准号:
    17K05374
  • 财政年份:
    2017
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Best evaluation of Sobolev inequality based on the perspective of special function theory
基于特殊函数理论视角的索博列夫不等式的最佳评价
  • 批准号:
    21540148
  • 财政年份:
    2009
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Best evaluation of Sobolev inequality using reproducing kernel and study of its application to science and engineering
再现核索博列夫不等式的最佳评价及其科学与工程应用研究
  • 批准号:
    23K03239
  • 财政年份:
    2023
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Reproducing Kernel Hilbert Spaces, Matrix Theory, their relations and applications
再现核希尔伯特空间、矩阵理论、它们的关系和应用
  • 批准号:
    RGPIN-2018-04534
  • 财政年份:
    2022
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Discovery Grants Program - Individual
Operators on reproducing kernel Banach spaces of analytic functions
解析函数的核Banach空间再现算子
  • 批准号:
    RGPIN-2017-04975
  • 财政年份:
    2021
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Discovery Grants Program - Individual
Operator algebras of multipliers on reproducing kernel Hilbert spaces
再生核希尔伯特空间上的乘子算子代数
  • 批准号:
    RGPIN-2016-05914
  • 财政年份:
    2021
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Discovery Grants Program - Individual
Reproducing Kernel Hilbert Spaces, Matrix Theory, their relations and applications
再现核希尔伯特空间、矩阵理论、它们的关系和应用
  • 批准号:
    RGPIN-2018-04534
  • 财政年份:
    2021
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Discovery Grants Program - Individual
Analysis on reproducing kernel Hilbert spaces
再生核希尔伯特空间分析
  • 批准号:
    20K14334
  • 财政年份:
    2020
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Operators on reproducing kernel Banach spaces of analytic functions
解析函数的核Banach空间再现算子
  • 批准号:
    RGPIN-2017-04975
  • 财政年份:
    2020
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Discovery Grants Program - Individual
Operator algebras of multipliers on reproducing kernel Hilbert spaces
再生核希尔伯特空间上的乘子算子代数
  • 批准号:
    RGPIN-2016-05914
  • 财政年份:
    2020
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Discovery Grants Program - Individual
Reproducing Kernel Hilbert Spaces, Matrix Theory, their relations and applications
再现核希尔伯特空间、矩阵理论、它们的关系和应用
  • 批准号:
    RGPIN-2018-04534
  • 财政年份:
    2020
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Discovery Grants Program - Individual
Uncertainty Principles in Reproducing Kernel Hilbert Spaces
再现核希尔伯特空间的不确定性原理
  • 批准号:
    2000236
  • 财政年份:
    2020
  • 资助金额:
    $ 1.54万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了