Numerical Study fof New Control Method fir Cavity Flow Oscillations

腔流振荡新控制方法的数值研究

基本信息

  • 批准号:
    18560160
  • 负责人:
  • 金额:
    $ 1.46万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2006
  • 资助国家:
    日本
  • 起止时间:
    2006 至 2007
  • 项目状态:
    已结题

项目摘要

We investigated the active control of self-sustained oscillating flow over an open cavity using a moving bottom wall. The incompressible Navier-Stokes equations were solved using finite difference methods for the two-dimensional cavity with laminar boundary layer upstream.We move the cavity bottom wall tangentially with nondimensional velocities ranging from -0.2to +0.2for the cavity aspect ratio L/D=2.0. The results shown that wall velocity changes the characteristics of recirculating flow in the cavity and that the modification of recirculating flow plays an important role in changing the oscillation characteristics of the separated shear layer. When the wall velocity is less than -0.1, two recirculating vortices change to one clockwise recirculating vortex in the cavity, so that the self-excited shear layer oscillations are completely suppressed. When the wall velocity is more than +0.19, two stationary vortices exist on the upper side and lower side of the cavity and the self-excited shear layer oscillations are suppressed.A series of computations are carried out for different cavity lengths. The cavity length is varied at 0.1 intervals, ranging from 1.0 up to 4.0. For small cavity length, L<1.6, the flow does not oscillate and only one recirculation vortex is present in the cavity. For 1.7 < L < 3.0, the shear layer oscillates in mode II with two or three recirculation vortices. For long cavities L >3.1, four vortices appear inside the cavity and the oscillation mode switches from mode II to mode III.The results of controlled simulations show that the self-sustained shear layer oscillations for several cavity aspect ratio and different oscillation modes are suppressed by our control method using moving bottom wall.
我们研究了使用移动底壁对开放腔体上自持振荡流的主动控制。采用有限差分法求解上游具有层流边界层的二维空腔的不可压缩Navier-Stokes方程。对于空腔纵横比L/D=2.0,我们以-0.2到+0.2的无量纲速度切向移动空腔底壁。结果表明,壁速改变了腔内循环流的特性,循环流的修改对于改变分离剪切层的振荡特性起着重要作用。当壁速小于-0.1时,腔内由两个循环涡变为一个顺时针循环涡,自激剪切层振荡被完全抑制。当壁速大于+0.19时,空腔上下两侧存在两个静止涡,自激剪切层振荡得到抑制。针对不同的空腔长度进行了一系列计算。空腔长度以 0.1 为间隔变化,范围从 1.0 到 4.0。对于较小的腔体长度,L<1.6,流动不会振荡,并且腔体中仅存在一个再循环涡流。当 1.7 < L < 3.0 时,剪切层以模式 II 振荡,具有两个或三个再循环涡流。对于长腔L>3.1,腔内出现四个涡流,振荡模式从模式II切换到模式III。控制模拟的结果表明,我们使用移动底壁的控制方法抑制了多种腔长宽比和不同振荡模式的自持剪切层振荡。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Numerical analysis of two-dimensional incompressible flow over rectangular cavities
矩形腔体上二维不可压缩流动的数值分析
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Takashi;YOSHIDA
  • 通讯作者:
    YOSHIDA
Control of flow-induced cavity oscillations using moving bottom wall
使用移动底壁控制流动引起的腔体振荡
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Takashi;YOSHIDA
  • 通讯作者:
    YOSHIDA
Numerical Analysis of Control of Flow Oscillations in Open Cavity Using Moving Bottom Wall
利用移动底壁控制开腔流动振荡的数值分析
Numerical analysis of self-sustained oscillations in two-dimensional incompressible flow over rectangular cavities
矩形腔内二维不可压缩流动自持振荡的数值分析
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Takashi;YOSHIDA
  • 通讯作者:
    YOSHIDA
開いたキャビティを過ぎる二次元非圧縮流れの自励振動の数値解析
流过开腔的二维不可压缩流自激振动的数值分析
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Takashi;YOSHIDA;Takashi Yoshida;吉田尚史
  • 通讯作者:
    吉田尚史
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

YOSHIDA Takashi其他文献

YOSHIDA Takashi的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('YOSHIDA Takashi', 18)}}的其他基金

Elucidation of the adrenal gland regeneration mechanism and application to adrenocortical autotransplantation
肾上腺再生机制的阐明及其在肾上腺皮质自体移植中的应用
  • 批准号:
    16K10483
  • 财政年份:
    2016
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Elucidation of antiviral activity of sulfated polysacharides by SPR
SPR 阐明硫酸化多糖的抗病毒活性
  • 批准号:
    24550129
  • 财政年份:
    2012
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Prevention of implant related infection using titanium dioxide photocatalyst and ultrasound
利用二氧化钛光触媒和超声波预防植入物相关感染
  • 批准号:
    24700460
  • 财政年份:
    2012
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Development of highly sensitive bio-immunoassay sensor using Brownian relaxation of the magnetic nanoparticle
利用磁性纳米粒子的布朗弛豫开发高灵敏度生物免疫分析传感器
  • 批准号:
    23760369
  • 财政年份:
    2011
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Effects of supernova neutrino self-interaction on supernova nucleosynthesis and neutrino observations
超新星中微子自相互作用对超新星核合成和中微子观测的影响
  • 批准号:
    23540287
  • 财政年份:
    2011
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Library construction of cyanobacteria- bacteriophage system for a platform toward the next generation photo-fermentation.
蓝藻-噬菌体系统的文库构建,为下一代光发酵平台。
  • 批准号:
    23658160
  • 财政年份:
    2011
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Cyanophage metagenomic study towards control of toxic cyanobacterial blooms.
控制有毒蓝藻水华的噬藻体宏基因组研究。
  • 批准号:
    23310056
  • 财政年份:
    2011
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Intergenerational Income Mobility and evaluation of equality of opportunity in Japan
日本代际收入流动性与机会平等评价
  • 批准号:
    22730382
  • 财政年份:
    2010
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Identification of mechanosensitive channels responded to hypo-osmotic stress in the osteoblast
鉴定成骨细胞中响应低渗透压的机械敏感通道
  • 批准号:
    22791785
  • 财政年份:
    2010
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Development of alkyl curdlan sulfate-coated nano fiber with specific influenza A virus-adsorptive functionality
开发具有特定甲型流感病毒吸附功能的烷基凝胶多糖硫酸盐涂层纳米纤维
  • 批准号:
    21550199
  • 财政年份:
    2009
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

Estimation of strong ground motion using accurate and efficient mesh-free finite-difference method
使用准确高效的无网格有限差分法估计强地面运动
  • 批准号:
    17K06531
  • 财政年份:
    2017
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Aeroelastic Tailoring of Low Speed Aircraft through an Implicit Finite Difference Method
通过隐式有限差分法对低速飞机进行气动弹性剪裁
  • 批准号:
    511105-2017
  • 财政年份:
    2017
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Development of a full-waveform inversion method utilizing a mesh-free finite-difference method
利用无网格有限差分法开发全波形反演方法
  • 批准号:
    15K18301
  • 财政年份:
    2015
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Development of tsunami model integrating the Finite Difference Method and the Finite Vomule Method
结合有限差分法和有限体积法的海啸模型开发
  • 批准号:
    26820206
  • 财政年份:
    2014
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Geometric structure-preserving finite difference method for vector-valued evolution equation
向量值演化方程的几何保结构有限差分法
  • 批准号:
    24654026
  • 财政年份:
    2012
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Construction of Flood Flows Simulation Model Based on High Resolution Upwinding Finite Difference Method
基于高分辨率逆风有限差分法的洪水模拟模型构建
  • 批准号:
    11450190
  • 财政年份:
    1999
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Numerical Analysis of Compressible and Incompressible Turbulence Using High Order Finite Difference Method
高阶有限差分法对可压缩和不可压缩湍流的数值分析
  • 批准号:
    07650204
  • 财政年份:
    1995
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Finite Difference Method and Finite Element Method on Manifolds, and Their Applications
流形上的有限差分法和有限元法及其应用
  • 批准号:
    60540110
  • 财政年份:
    1985
  • 资助金额:
    $ 1.46万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
Application of the Finite Difference Method in Seismology to Crust and Upper Mantle Studies
地震学有限差分法在地壳和上地幔研究中的应用
  • 批准号:
    6931899
  • 财政年份:
    1969
  • 资助金额:
    $ 1.46万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了