Efficient Prediction of Application Metrics for E-Services
电子服务应用指标的有效预测
基本信息
- 批准号:DP0345713
- 负责人:
- 金额:$ 13.49万
- 依托单位:
- 依托单位国家:澳大利亚
- 项目类别:Discovery Projects
- 财政年份:2003
- 资助国家:澳大利亚
- 起止时间:2003-02-01 至 2005-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Application Service Providers (ASPs) are one of the fastest growing classes of e-services and operate on the principle of renting software applications. This project aims to develop prediction techniques to estimate quality of service metrics for ASPs. The efficient prediction of the service levels that can be ensured is challenging given the dynamic nature of the Internet and the semantics of application metrics not being formally defined. The project will result in the development of a prototype system to support prediction of service levels. This system will be accessible to the Australian e-services industry via a web interface.
应用程序服务提供商(ASP)是增长最快的电子服务类别之一,其运营原则是租用软件应用程序。该项目旨在开发预测技术,以评估服务质量指标的应用程序。考虑到互联网的动态特性和未正式定义的应用程序度量的语义,可以确保的服务级别的有效预测是具有挑战性的。该项目将导致开发一个原型系统,以支持服务水平的预测。澳大利亚电子服务行业可以通过网络界面访问该系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Prof Arkady Zaslavsky其他文献
Prof Arkady Zaslavsky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Prof Arkady Zaslavsky', 18)}}的其他基金
Adaptive context caching for fast concurrent access in Internet of Things
物联网中快速并发访问的自适应上下文缓存
- 批准号:
DP200102299 - 财政年份:2020
- 资助金额:
$ 13.49万 - 项目类别:
Discovery Projects
Adaptive data stream processing in heterogeneous distributed computing environments using real-time context
使用实时上下文的异构分布式计算环境中的自适应数据流处理
- 批准号:
DP0880874 - 财政年份:2008
- 资助金额:
$ 13.49万 - 项目类别:
Discovery Projects
e-Hermes: Context-rich mobile agent technologies to support information needs of financial institutions
e-Hermes:上下文丰富的移动代理技术,支持金融机构的信息需求
- 批准号:
LP0211384 - 财政年份:2002
- 资助金额:
$ 13.49万 - 项目类别:
Linkage Projects
相似海外基金
Prediction of Phase Transition Behavior by Machine Learning to Interpret Molecular Arrangement and Application to Photofunctional Liquid Crystals
通过机器学习预测相变行为以解释分子排列及其在光功能液晶中的应用
- 批准号:
22KJ1964 - 财政年份:2023
- 资助金额:
$ 13.49万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Feature extraction of reaction route map by topological data analysis and its application to reactivity comparison, classification, and prediction
拓扑数据分析反应路线图特征提取及其在反应性比较、分类和预测中的应用
- 批准号:
23H01915 - 财政年份:2023
- 资助金额:
$ 13.49万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Application of machine learning to genomic selection of dairy cattle through improved feed efficiency complex prediction
通过提高饲料效率综合预测,将机器学习应用于奶牛基因组选择
- 批准号:
2887069 - 财政年份:2023
- 资助金额:
$ 13.49万 - 项目类别:
Studentship
Prediction of extrahepatic metastasis in colorectal cancer liver metastasis and application to Precision medicine
结直肠癌肝转移的肝外转移预测及其在精准医疗中的应用
- 批准号:
23K15475 - 财政年份:2023
- 资助金额:
$ 13.49万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Elucidation of the molecular mechanism of clonality abnormality in bovine enzootic leukemia and its application to onset prediction
阐明牛地方性白血病克隆异常的分子机制及其在发病预测中的应用
- 批准号:
23H02378 - 财政年份:2023
- 资助金额:
$ 13.49万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Improving chemical exposome target prediction by application of Coupled Matrix/Tensor-Matrix/Tensor Completion algorithms
通过应用耦合矩阵/张量矩阵/张量完成算法改进化学暴露组目标预测
- 批准号:
10734136 - 财政年份:2023
- 资助金额:
$ 13.49万 - 项目类别:
Construction and Clinical Application of a 72-h Mortality Prediction Model for High D-dimer Patients: Validation by Comparison of Statistical and Machine Learning Analyses
高 D-二聚体患者 72 小时死亡率预测模型的构建和临床应用:通过统计和机器学习分析比较进行验证
- 批准号:
22K09170 - 财政年份:2022
- 资助金额:
$ 13.49万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Development of Fast and Accurate Computational Chemistry Methods based on Atom-Centred Potentials and their Application to Crystal Structure Prediction
基于原子中心势的快速准确计算化学方法的发展及其在晶体结构预测中的应用
- 批准号:
RGPIN-2021-03080 - 财政年份:2022
- 资助金额:
$ 13.49万 - 项目类别:
Discovery Grants Program - Individual
Application of machine learning for fast prediction of MRI-induced RF heating in patients with implanted conductive leads
应用机器学习快速预测植入导电导线患者的 MRI 引起的射频加热
- 批准号:
10431261 - 财政年份:2022
- 资助金额:
$ 13.49万 - 项目类别:
Application of workload data for high accuracy plant data estimation and yield prediction
应用工作量数据进行高精度工厂数据估算和产量预测
- 批准号:
22K14974 - 财政年份:2022
- 资助金额:
$ 13.49万 - 项目类别:
Grant-in-Aid for Early-Career Scientists