頂点作用素代数の自己同型群としての散在型有限単純群の実現

分散有限单群作为顶点算子代数自守群的实现

基本信息

  • 批准号:
    18740001
  • 负责人:
  • 金额:
    $ 1.28万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
  • 财政年份:
    2006
  • 资助国家:
    日本
  • 起止时间:
    2006 至 2008
  • 项目状态:
    已结题

项目摘要

本年度は,この研究の基礎となるモンスター単純群のアマルガムを用いた部分群による特徴付けをムーンシャイン加群上で行った.ムーンシャイン加群はリーチ格子に付随する頂点作用素代数の拡大として得られている.よって,リーチ格子の部分格子を考え,付随する頂点作用素代数の拡大としてムーンシャイン加群を考えることができる.これら拡大に対応した自己同型群の持ち上げを考えることで,モンスターアマルガムを構成する自己同型群を得ることが出来,モンスター単純群をムーンシャイン加群上で捉えることできた.この結果は論文にまとめられ,雑誌Mathematische Zeitschriftに受理されている.また,階数32のBarnes-Wall格子に付随する頂点作用素代数の拡大についても同様な手法での自己同型群の決定を試みた.しかし,対応するアマルガムは知られていなかった.ゆえに,頂点作用素代数のある部分構造に注目し,付随するグラフ構造を導入した.そして,グラフへの作用を用いて自己同型群の決定を行った.その結果,重要なLie型の有限単純群が作用することがわかった.この手法は自己同型群を決定する新しい手法であり,対応するアマルガムが知られていない散在型有限単純群を頂点作用素代数の自己同型群として実現する際に効果的に応用できる可能性を秘めている.この結果は2006年12月に京都数理解析研究所で行われた研究集会「群論とその周辺」において口頭発表されている.
This year, the basis of this research is to study the characteristics of a group of pure groups. The vertex action algebra of the vertex action algebra is changed from the lattice to the lattice. A partial lattice of the lattice is examined, and the vertex action algebra is added to the group. This is the first time that a group of individuals has been identified as a member of a group of individuals. The result is that Mathematische Zeitschrift is accepted. The Barnes-Wall lattice of order 32 is used to determine the isotype group of vertex action algebra. The answer is no. A vertex action algebra is introduced into the structure of a vertex action algebra. In addition, the role of the group is to determine the behavior of its own isotype. As a result, the finite pure group of Lie type plays an important role. This method determines its own isotype group by a new method, and the probability of its application is unknown when it occurs. The results were presented at the Kyoto Institute of Mathematical Analysis in December 2006.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Lifts of automorphisms of vertex operator algebras in simple current extensions
简单电流扩展中顶点算子代数自同构的提升
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    三浦靖一郎;谷地館藍;星野遼;鈴木悠平;三浦靖一郎;坂本 美紀;坂本 美紀;坂本 美紀;坂本 美紀;坂本 美紀;坂本 美紀;島倉裕樹
  • 通讯作者:
    島倉裕樹
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

島倉 裕樹其他文献

島倉 裕樹的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('島倉 裕樹', 18)}}的其他基金

頂点作用素代数を用いた有限群のY表現の研究
用顶点算子代数研究有限群的Y表示
  • 批准号:
    24K06658
  • 财政年份:
    2024
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on uniform construction and automorphism groups of holomorphic vertex operator algebras of central charge 24
中心电荷全纯顶点算子代数的一致构造和自同构群研究 24
  • 批准号:
    20K03505
  • 财政年份:
    2020
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
散在型有限単純群が作用する頂点作用素代数の構成
离散有限单群作用的顶点算子代数的构造
  • 批准号:
    07J00542
  • 财政年份:
    2007
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
バイモンスターのコクセター群の剰余群としての表現の頂点作用素代数上での実現
Bimonster Coxeter群表示为顶点算子代数上的余数群的实现
  • 批准号:
    03J10878
  • 财政年份:
    2003
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows

相似海外基金

散在型有限単純群が作用する頂点作用素代数の構成
离散有限单群作用的顶点算子代数的构造
  • 批准号:
    07J00542
  • 财政年份:
    2007
  • 资助金额:
    $ 1.28万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了