Mathematical model of non-linear volcanic tremors

非线性火山地震的数学模型

基本信息

  • 批准号:
    19540441
  • 负责人:
  • 金额:
    $ 2.75万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2007
  • 资助国家:
    日本
  • 起止时间:
    2007 至 2009
  • 项目状态:
    已结题

项目摘要

On September 1, 2004, a middle-scale eruption occurred at Mt.Asama. Before the eruption, we observed three long-period tremors with singular waveforms, which occurred at 4:25, 11:30, and 20:30 on June 24, 2004. The common characteristic of these tremors is that the tip of the waveform is sharp. This sharp-pointed waveform may suggest a non-linear dynamics of the source process. In addition, these singular tremors occurred at intervals of 7 to 9 hours on the same day, suggesting that the source process of these tremors is in common. In this paper, the dynamical structure and characteristics of these tremors are investigated by employing some reliable and robust techniques in the estimation of geometrical and dynamical parameters.Embedding by the method of time delays has become the standard procedure in non-linear dynamical system analysis of a single time series. The first step for the nonlinear analysis of a single time series is to reconstruct a topologically equivalent attractor to … More the original in a relatively low-dimensional delay-coordinate space. The key questions are how the minimum embedding dimension can be determined for reconstructing the original dynamics, and how we select the delay time. We employed some reliable and robust techniques in the estimation of optimum delay time and minimum embedding dimension. Concretely, we used higher-order correlations to select an optimum delay time (Albano et al., 1991). A practical method for determining minimum embedding dimension proposed by Cao (1997) was used in this paper. To verify this approach, we applied this method to Julian's non-linear tremor model, obtaining suitable embedding dimension and correlation dimension for Julian's system.To select the long-period component, we employ a FIR low-pass filter with a cut-off frequency of 0.4Hz. For the tremor occurred at 4:25, the optimum time lag of 0.24 sec and the minimum embedding dimension of 8 were obtained by employing these methods. We succeed in reconstructing an attractor of the tremors using these dimension and time lag. Then, we calculated a correlation integral curve of the reconstructed attractor, founding a scaling region over one decade with the correlation dimension of 2.04 plus minus 0.17. The correlation dimension converges a certain value as increasing the embedding dimension. This suggests that the time series is not random data and the correlation dimension is estimated correctly. We analyzed two other tremors and revealed the non-linear dynamics of long-period tremors using the embedding method of time delays and the surrogate data analysis, and made clear that there existed a deterministic non-linear dynamics in the tremor excitation, which could be modeled with the system dimension between 3 to 7 (prospective dimension 3 or 4).We also applied a non-linear prediction approach based on the theory of KM_2O-Langevin equation to evaluate a contribution from non-linearity of the system. In addition, we developed a new method for detecting and picking P- and S-wave signals automatically. Compared to methods currently in use, our method requires less assumption with properties of the data time series. We also developed a new approach for analysis of frequency structure of tremor based on the theory of KM_2O-Langevin equation. We applied the new algorithm to obtain a frequency structure form highly noisy data of deep low-frequency tremors occurred in western Shikoku, Japan, and reveal the characteristic frequency structure of deep low-frequency tremors with peaks lined up from 1 to 5Hz at intervals of 0.5Hz.In next step, we apply the embedding method of time delays to the long-period long-lasting earthquakes and estimate geometrical and dynamical non-linear parameters of them to constrain the dynamics in the excitation. Embedding by the method of time delays has become the standard procedure in non-linear dynamical system analysis of a single time series. The waveforms of the long-period long-lasting earthquakes were similar to each other, so we selected a typical event that occurred at 12:34 on June 12, 2004. We employed a FIR low-pass filter with a cut-off frequency of 1Hz to omit high frequency component. The optimum time lag of 0.24 sec and the minimum embedding dimension of 7 were obtained by employing these methods. We succeed in reconstructing the attractor of the long-period earthquakes, and got a correlation integral curve of the reconstructed attractor, founding a scaling region over one decade with the correlation dimension of 2.04 plus minus 0.11. This result indicates that the source process of long-period long-lasting earthquake could be modeled on a non-linear dynamics with a system dimension between 3 to 6, which is similar dimension range with the source process of long-period tremors. Another way of saying, the apparent waveform characteristics of long-period earthquakes and long-period tremors are quite different, however the both correlation dimensions calculated from the reconstructed attractors are almost same values.Modifying a hydraulic control valve model with the system dimension of 4, we succeeded to simulate a long-period oscillation resembling with the long-period earthquakes and with the long-period tremors based on a same mathematical model. These two long-period oscillations are sharply distinguished by a discharge coefficient of vent. The remaining problem is how to excite seismic waves from the simulated valve oscillations. Less
2004年9月1日,浅间山发生了一次中等规模的喷发。2004年6月24日4时25分、11时30分和20时30分,我们观测到三次奇异波形的长周期地震。这些震动的共同特征是波形的尖端是尖锐的。这种尖锐的波形可能表明源过程的非线性动力学。此外,这些单一地震在同一天每隔7 ~ 9小时发生一次,说明这些地震的震源过程是共同的。本文采用可靠的、鲁棒的几何参数和动力学参数估计技术,研究了这些地震的动力结构和特性。用时间延迟方法进行嵌入已经成为单时间序列非线性动力系统分析的标准方法。对单个时间序列进行非线性分析的第一步是在一个相对低维的延迟坐标空间中重构一个拓扑等价的吸引子,使其更接近原始的吸引子。关键问题是如何确定最小嵌入维数来重建原始动态,以及如何选择延迟时间。我们采用了一些可靠的鲁棒技术来估计最优延迟时间和最小嵌入维数。具体而言,我们使用高阶相关性来选择最佳延迟时间(Albano et al., 1991)。本文采用了Cao(1997)提出的确定最小嵌入维数的实用方法。为了验证该方法,我们将该方法应用于Julian的非线性震颤模型,得到了适合Julian系统的嵌入维数和相关维数。为了选择长周期分量,我们采用了截止频率为0.4Hz的FIR低通滤波器。对于发生在4点25分的地震,该方法得到的最佳滞后时间为0.24秒,最小嵌入维数为8。我们成功地利用这些维数和时间延迟重建了地震的吸引子。然后,我们计算了重构吸引子的相关积分曲线,建立了一个相关维数为2.04±0.17的十年尺度区域。随着嵌入维数的增加,相关维收敛到一定值。这说明时间序列不是随机数据,相关维数估计正确。我们分析了另外两个地震,利用时间延迟嵌入方法和替代数据分析揭示了长周期地震的非线性动力学,明确了地震激励存在确定性的非线性动力学,可以用系统维数3 ~ 7(预期维数3或4)来建模。我们还应用了基于km_20 - langevin方程理论的非线性预测方法来评估系统非线性的贡献。此外,我们还开发了一种自动检测和提取P波和s波信号的新方法。与目前使用的方法相比,我们的方法对数据时间序列性质的假设较少。本文还提出了一种基于km_20 - langevin方程理论分析地震频率结构的新方法。利用该算法从日本四国西部地区的高噪声深低频地震数据中获得了频率结构,揭示了以0.5Hz为间隔在1 ~ 5Hz范围内排列的深低频地震的特征频率结构。下一步,我们将时间延迟的嵌入方法应用于长周期持久地震,并估计其几何和动力学非线性参数来约束激励中的动力学。用时间延迟方法进行嵌入已经成为单时间序列非线性动力系统分析的标准方法。由于长周期持久地震的波形具有相似性,因此选取了2004年6月12日12时34分发生的一次典型地震。我们采用截止频率为1Hz的FIR低通滤波器来忽略高频成分。结果表明,该方法的最佳时滞为0.24秒,最小嵌入维数为7。我们成功地重建了长周期地震的吸引子,并得到了重建吸引子的相关积分曲线,建立了一个相关维数为2.04±0.11的十年尺度区域。这一结果表明,长周期持久地震的震源过程可以用一个系统维数在3 ~ 6之间的非线性动力学模型来模拟,其维数范围与长周期地震的震源过程相似。换句话说,长周期地震和长周期地震的表观波形特征有很大的不同,但从重建的吸引子计算出的相关维数几乎是相同的。对系统维数为4的液压控制阀模型进行修正,成功地模拟出了类似于长周期地震和基于同一数学模型的长周期地震的长周期振荡。这两种长周期振荡可以通过通风口的流量系数来明显区分。剩下的问题是如何从模拟的阀门振动中激发地震波。少

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
浅間山で観測される特異な長周期地震・長周期微動の非線形ダイナミクスについて
浅间山特有长周期地震和长周期颤动的非线性动力学研究
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S.C.Lin;Y.Minamisawa;K.Furusawa;Y.Maki;H.Takeno;T.Yamamoto;T.Dobashi;武尾実
  • 通讯作者:
    武尾実
Non-linear dynamics of singular long-period long-lasting volcanic earthquakes observed at Mt. Asama
浅间山观测到的奇异长周期火山地震的非线性动力学
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Takeo;M.
  • 通讯作者:
    M.
Non-linear dynamics of singular long-period volcanic tremor observed at Mt. Asama
浅间山观测到的奇异长周期火山颤动的非线性动力学
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Takeo;M.
  • 通讯作者:
    M.
Frequency structure of deep low-frequency tremors occurring in western Shikoku region
四国西部地区深部低频震的频率结构
Automatic seismic wave arrival detection and picking with stationary analysis: Application of the KM20-Langevin equations
通过平稳分析自动地震波到达检测和拾取:KM20-Langevin 方程的应用
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nakamula;S.;and M. Takeo
  • 通讯作者:
    and M. Takeo
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

TAKEO Minoru其他文献

TAKEO Minoru的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('TAKEO Minoru', 18)}}的其他基金

Study of island-forming eruption at Nishinoshima based on remote multi-fields observation
基于远程多场观测的西之岛造岛喷发研究
  • 批准号:
    16H02221
  • 财政年份:
    2016
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Research for internal state of a volcanic conduit based on volcanic tremors, long-period earthquakes, and infrasonic signals
基于火山颤动、长周期地震和次声信号的火山通道内部状态研究
  • 批准号:
    22540431
  • 财政年份:
    2010
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Physical model of deep low-frequency earthquakes occurred beneath Japan Island Arc
日本岛弧下方深部低频地震的物理模型
  • 批准号:
    14340127
  • 财政年份:
    2002
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of a High-Gain Rotational-Motion Seismograph
高增益旋转地震仪的研制
  • 批准号:
    11354004
  • 财政年份:
    1999
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
Development of a High-Gain Rotational-Motion Seismograph
高增益旋转地震仪的研制
  • 批准号:
    11640407
  • 财政年份:
    1999
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of a seismic network in the Western Pacific
西太平洋地震台网的发展
  • 批准号:
    07041092
  • 财政年份:
    1995
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for international Scientific Research
Ground rotational motions excited by earthquakes
地震引起的地面旋转运动
  • 批准号:
    07454102
  • 财政年份:
    1995
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Simulation of Long-Period Ground Motions for the 1923 Kanto Earthquake
1923 年关东地震的长周期地面运动模拟
  • 批准号:
    05680358
  • 财政年份:
    1993
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)

相似海外基金

超高速と高精度を両立する粗微動サーボ弁による非接触駆動エアステージの駆動制御法
采用粗动/微动伺服阀的非接触式驱动气平台的驱动控制方法,实现超高速和高精度
  • 批准号:
    24K07391
  • 财政年份:
    2024
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
地表地震断層ごく近傍で常時微動特性は本当に変化するのか?
地表地震断层附近的微震特征真的会发生变化吗?
  • 批准号:
    24K07156
  • 财政年份:
    2024
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
観察者の視線分布に基づく微動作映像の印象認識に関する研究
基于观察者注视分布的微动图像印象识别研究
  • 批准号:
    23K11145
  • 财政年份:
    2023
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
磁力による非接触駆動と可撓機構支持で高精度位置決めを達成する2軸微動装置の開発
开发利用磁力和柔性机构支撑的非接触式驱动实现高精度定位的两轴微动装置
  • 批准号:
    22K03863
  • 财政年份:
    2022
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
常時微動の6成分展開観測に基づく地下構造推定の高度化と地盤災害抑止への応用
基于微震六分量观测的地下结构复杂度估算及其在地面防灾中的应用
  • 批准号:
    22K04285
  • 财政年份:
    2022
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
常時微動を用いた実庁舎の杭頭探傷と地震時における杭基礎の危険度判定手法の開発
利用持续微震对实际政府建筑进行桩头探伤检测以及地震期间桩基风险评估方法的开发
  • 批准号:
    22K04407
  • 财政年份:
    2022
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
地震時崩壊性地すべり発生地点の微動特性と火山灰土壌の物理・力学特性との相関
地震滑坡发生地微震特征与火山灰土物理力学性质的相关性
  • 批准号:
    21K04615
  • 财政年份:
    2021
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
1メートルストローク、1ナノメートル微動を実現するワイヤレス多自由度小型自走機械
实现1米行程、1纳米微动的无线多自由度紧凑型自走机
  • 批准号:
    21K03972
  • 财政年份:
    2021
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
マルチアレイ微動観測の大量データに基づく地下構造モデルのアップコンバート技術開発
基于多阵微震观测大量数据的地下结构模型上转换技术开发
  • 批准号:
    21H01588
  • 财政年份:
    2021
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
ゆっくり地震は面的に発生するのか? -低周波微動の三次元断層構造の解明-
慢地震是否会在大范围内发生?
  • 批准号:
    19J12976
  • 财政年份:
    2019
  • 资助金额:
    $ 2.75万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了