Development of mathematical analysis via phase field method
通过相场方法进行数学分析的发展
基本信息
- 批准号:21340033
- 负责人:
- 金额:$ 9.65万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (B)
- 财政年份:2009
- 资助国家:日本
- 起止时间:2009 至 2012
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A family of smooth surfaces parameterized by time is called mean curvature flow if the velocity of motion at each point and time is equal to its mean curvature vector. We have made fundamental advance of knowledge on the general existence and regularity theory of mean curvature flow which may have singularities, and moreover, on those of geometric time evolution problems in large.
以时间为参数的光滑曲面族称为平均曲率流,如果每个点和时间的运动速度等于它的平均曲率向量。我们对可能具有奇性的平均曲率流的一般存在性和正则性理论,以及对几何时间演化问题的认识都取得了根本性的进展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
平均曲率流の弱解についての新展開
平均曲率流弱解的新进展
- DOI:
- 发表时间:2011
- 期刊:
- 影响因子:0
- 作者:A.Iwatsuka;T.Mine;S.Shimada;J. Byeon and K. Tanaka;時弘哲治;穴井宏和・横山和弘;仲田均;利根川吉廣
- 通讯作者:利根川吉廣
安定的な相分離面の正則性について
稳定相分离表面的规律性
- DOI:
- 发表时间:2010
- 期刊:
- 影响因子:0
- 作者:Kobayashi;H.;Kimura;H.;and Yamamoto;S.;Y.Takei;田村 英男;山本けい子;M. van der Put and M.-H. Saito;Hiroshi Kokubu;利根川吉廣
- 通讯作者:利根川吉廣
平均曲率流の弱解とその正則性理論
平均曲率流的弱解及其规律性理论
- DOI:
- 发表时间:2011
- 期刊:
- 影响因子:0
- 作者:Y. Higuchi;T. Matsumoto;O. Ogurisu;利根川吉廣
- 通讯作者:利根川吉廣
Stable and unstable critical points of double-well energy
双阱能量的稳定与不稳定临界点
- DOI:
- 发表时间:2011
- 期刊:
- 影响因子:0
- 作者:H.Awata;Y.Yamada;利根川吉廣
- 通讯作者:利根川吉廣
On the existence of mean curvature flow with transport term
含输运项的平均曲率流的存在性
- DOI:
- 发表时间:2010
- 期刊:
- 影响因子:1
- 作者:Okabe;S;北畑裕之;Hirofumi Osada;根上生也;H.Anai;Katusi Fukuyama;穴井宏和;Chun Liu
- 通讯作者:Chun Liu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
TONEGAWA Yoshihiro其他文献
TONEGAWA Yoshihiro的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('TONEGAWA Yoshihiro', 18)}}的其他基金
Multifaceted studies on dynamical problems in the calculus of variations using geometric measure theory
利用几何测度理论对变分法动力学问题进行多方面研究
- 批准号:
18H03670 - 财政年份:2018
- 资助金额:
$ 9.65万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Variational analysis on dynamic geometric problems
动态几何问题的变分分析
- 批准号:
25247008 - 财政年份:2013
- 资助金额:
$ 9.65万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Applications of current-varifold pair to variational method
当前变倍对在变分法中的应用
- 批准号:
23654057 - 财政年份:2011
- 资助金额:
$ 9.65万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
相似海外基金
境界での時間発展を考慮したCahn-Hilliard方程式の解のダイナミクスの探索
考虑边界处时间演化探索 Cahn-Hilliard 方程解的动力学
- 批准号:
23K19003 - 财政年份:2023
- 资助金额:
$ 9.65万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
CBMS Conference:The Cahn-Hilliard Equation: Recent Advances and Applications
CBMS 会议:Cahn-Hilliard 方程:最新进展和应用
- 批准号:
1836403 - 财政年份:2018
- 资助金额:
$ 9.65万 - 项目类别:
Standard Grant
差分法に対する新しい安定性概念の解析とCahn-Hilliard方程式での検証
有限差分法稳定性新概念分析及Cahn-Hilliard方程验证
- 批准号:
05750063 - 财政年份:1993
- 资助金额:
$ 9.65万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)
Mathematical Sciences: Numerical Analysis of the Cahn-Hilliard Equation
数学科学:卡恩-希利亚德方程的数值分析
- 批准号:
8896141 - 财政年份:1987
- 资助金额:
$ 9.65万 - 项目类别:
Standard Grant
Mathematical Sciences: Numerical Analysis of the Cahn-Hilliard Equation
数学科学:卡恩-希利亚德方程的数值分析
- 批准号:
8702457 - 财政年份:1987
- 资助金额:
$ 9.65万 - 项目类别:
Standard Grant














{{item.name}}会员




