Topological Structure of Weak Convergence of Nonadditive Measures

非相加测度弱收敛的拓扑结构

基本信息

  • 批准号:
    23540192
  • 负责人:
  • 金额:
    $ 3.33万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2011
  • 资助国家:
    日本
  • 起止时间:
    2011 至 2013
  • 项目状态:
    已结题

项目摘要

We introduced two explicit metrics for nonadditive measures on a metric space, which are called the Levy-Prokhorov metric and the Fortet-Mourier metric, and investigated their basic properties. Then, we gave a notion of the uniform equi-autocontinuity for a set of nonadditive measures and showed that both the Levy topology and the weak topology have uniform structures on such a set. As a result, we revealed that the Levy topology and the weak topology can be metrized by those explicit metrics.Next, we introduced an asymptotically translatable condition for a nonlinear functional to solve a Choquet integral representation problem for a comonotonically additive, monotone functional on the space of all continuous functions with compact support on a locally compact space.
我们引入了度量空间上非可加度量的两种显式度量,称为Levy-Prokhorov度量和Fortet-Mourier度量,并研究了它们的基本性质。然后,我们给出了非可加测度集的一致等自连续性的概念,并证明了Levy拓扑和弱拓扑在这样的集合上都具有一致结构。其次,我们引入了一个非线性泛函的渐近可平移条件来解决局部紧空间上具有紧支集的所有连续函数空间上的同调可加、单调泛函的Choket积分表示问题。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Metrizability of Lévy topology on nonadditive measures on a metric space
度量空间上非可加测度的 Lévy 拓扑的可度量性
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Koizumi; K. Watanabe;K. Watanabe;河邊 淳;K. Watanabe;O. Hatori and L Molnar;Jun Kawabe;O. Hatori;Jun Kawabe;O. Hatori and K. Watanabe;Jun Kawabe
  • 通讯作者:
    Jun Kawabe
漸近平行移動可能性をもつ汎関数のショケ積分表現
具有渐近平移可能性的泛函的 Choquet 积分表示
The Lévy-Prokhorov topology on nonadditive measures on metric spaces
度量空间上非可加测度的 Lévy-Prokhorov 拓扑
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hiroyasu Mizuguchi;Kichi-Suke Saito and Ryotaro Tanaka;Jun Kawabe;Jun Kawabe;Ryotaro Tanaka and Kichi-Suke Saito;Jun Kawabe
  • 通讯作者:
    Jun Kawabe
Riesz type integral representations for comonotonically additive functionals(S. Li, X. Wang et al., eds.)
同调可加泛函的 Riesz 型积分表示(S. Li, X. Wang 等人编辑)
Editorial: Nonlinear mathematics for uncertainty and its applications
社论:不确定性的非线性数学及其应用
  • DOI:
    10.1016/j.ijar.2012.11.008
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shoumei Li;Jun Kawabe
  • 通讯作者:
    Jun Kawabe
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KAWABE Jun其他文献

KAWABE Jun的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KAWABE Jun', 18)}}的其他基金

Nonlinear integrals in nonadditive measure theory and their study based on a perturbative method
非加性测度论中的非线性积分及其基于微扰法的研究
  • 批准号:
    26400130
  • 财政年份:
    2014
  • 资助金额:
    $ 3.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
New smoothness conditions on Riesz spaces with applications to nonadditive measures and Choquet integrals
Riesz 空间上的新平滑条件及其在非加性测度和 Choquet 积分中的应用
  • 批准号:
    20540163
  • 财政年份:
    2008
  • 资助金额:
    $ 3.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Non-additive measure theory in Riesz spaces with certain smoothenss conditions
具有一定平滑条件的Riesz空间中的非可加测度论
  • 批准号:
    18540166
  • 财政年份:
    2006
  • 资助金额:
    $ 3.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Weak order convergence of Riesz space-valued positive vector measures with applications
Riesz空间值正向量测度的弱阶收敛及其应用
  • 批准号:
    15540162
  • 财政年份:
    2003
  • 资助金额:
    $ 3.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Weak convergence of positive vector measures with applications to real analysis
正向量测量与实际分析应用的收敛性较弱
  • 批准号:
    13640162
  • 财政年份:
    2001
  • 资助金额:
    $ 3.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Weak convergence of vector measures with applications to real analysis
矢量测量与实际分析应用的收敛性较弱
  • 批准号:
    11640160
  • 财政年份:
    1999
  • 资助金额:
    $ 3.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Weak convergence of vector measures on topological spaces and its applications
拓扑空间矢量测度的弱收敛及其应用
  • 批准号:
    09640173
  • 财政年份:
    1997
  • 资助金额:
    $ 3.33万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

無限次元空間上の測度の弱収束の研究とその応用
无限维空间测度弱收敛性研究及其应用
  • 批准号:
    07640189
  • 财政年份:
    1995
  • 资助金额:
    $ 3.33万
  • 项目类别:
    Grant-in-Aid for General Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了