Weak convergence of positive vector measures with applications to real analysis

正向量测量与实际分析应用的收敛性较弱

基本信息

  • 批准号:
    13640162
  • 负责人:
  • 金额:
    $ 2.05万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2001
  • 资助国家:
    日本
  • 起止时间:
    2001 至 2002
  • 项目状态:
    已结题

项目摘要

We have studied weak convergence of positive vector measures with values in Banach spaces and nuclear spaces, and have applied to several interesting problems in real analysis, probability theory, control theory, differential geometry and so on. Some of our important results are as follows:1. A sequential compactness criterion is given for the weak topology of vector measures with values in certain nuclear spaces.2. It is shown that the injective tensor product of positive vector measures in certain Banach lattices is jointly continuous with respect to the weak convergence of vector measures. Our approach to this problem is based on Bartle's bilinear integration theory.3. Prokhorov-LeCam' s compactness criteria and Varadarajan' s metrizability criterion are given for vector measures with values in Frechet spaces, semi-reflexive spaces, and semi-Montel spaces.4. The existence and uniqueness of the Borel injective tensor product of two Banach space-valued vector measures and the validity … More of a Fubini-type theorem are shown. Thanks to these results, the convolution of vector measures on a topological semigroup is defined as the measure induced by their Borel injective tensor product and the semigroup operation. The joint weak continuity of Borel injective tensor products or convolutions of vector measures is also proved.5. Compactness and sequential compactness criteria are given for a set of vector measures on a complete separable metric space with values in a certain semi-Montel space.6. It is shown that the Portmanteau Theorem remains valid for order σ-additive, positive vector measures with values in a Dedekind σ-complete Riesz space.7. A general theorem for the method of absolute Norulund summability is given.8. Some new characterizations of compact sets are given.9. The uniqueness of the solutions in H^∞ control problems is proved for general plants. Another proof, which does not depend on the complexity of the form of the algebraic Riccati equations, is also given.10. It is proved that there is a qubic-free sequence of letters.11. It is shown that a conformal Killing vector field is parallel on a compact almost Kahlerian manifold. Less
本文研究了取值于Banach空间和核空间的正向量测度的弱收敛性,并应用于真实的分析、概率论、控制论、微分几何等领域中的一些有趣的问题,主要结果如下:1.给出了取值于核空间的向量测度的弱拓扑的序列紧性准则.证明了某些Banach格上正向量测度的内射张量积关于向量测度的弱收敛是联合连续的。我们解决这个问题的方法是基于Bartle的双线性积分理论。对于取值于Frechet空间、半自反空间和半Montel空间的向量测度,给出了Prokhorov-LeCam紧性准则和Varadarajan度量化准则.两个Banach空间值向量测度的Borel内射张量积的存在唯一性及其有效性 ...更多信息 示出了富比尼型定理的。利用这些结果,定义了拓扑半群上向量测度的卷积为它们的Borel内射张量积和半群运算所诱导的测度。证明了向量测度的Borel内射张量积或卷积的联合弱连续性.给出了完备可分度量空间上值在某个半Montel空间上的向量测度集的紧性和序列紧性准则.证明了Portmanteau定理对于值在Dedekind σ-完备Riesz空间中的阶σ-可加正向量测度仍然成立.给出了绝对Norulund可和性方法的一般定理.给出了紧集的一些新的刻画.对于一般对象,证明了H^∞控制问题解的唯一性.给出了不依赖于代数Riccati方程形式复杂性的另一个证明。它被证明是有一个qubic免费序列的字母。11.证明了紧致几乎Kahlerian流形上的共形Killing向量场是平行的。少

项目成果

期刊论文数量(44)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
J.Kawabe: "Sequential compactness for the weak topology of vector measures in certain nuclear spaces"Georgian Math.J.. 8. 283-295 (2001)
J.Kawabe:“某些核空间中矢量测度弱拓扑的顺序紧性”Georgian Math.J.. 8. 283-295 (2001)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
J.Kawabe: "Joint continuity of injective tensor products of vector measures in Banach lattices"J.Aust.Math.Soc.. 73. 1-15 (2002)
J.Kawabe:“Banach 格子中矢量测度的单射张量积的联合连续性”J.Aust.Math.Soc.. 73. 1-15 (2002)
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
J.Kawabe: "Strassen's theorem for positive vector measures"京都大学数理解析研究所講究録. 1298. 59-64 (2002)
J.Kawabe:“正向量测度的斯特拉森定理”京都大学数学科学研究所 Kokyuroku。1298. 59-64 (2002)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
遠藤 登: "時間依存するファジィ集合族を用いた最適制御問題に関する一考察"京都大学数理解析研究所講究録. 1186. 216-223 (2001)
Noboru Endo:“使用时间相关模糊集族的最优控制问题的研究”京都大学数学科学研究所 Kokyuroku。1186. 216-223 (2001)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Jun Kawabe: "Weak convergence of injective tensor products of vector measures"AMC 2000 Proceedings. (印刷中).
Jun Kawabe:“矢量测量的单射张量积的弱收敛”AMC 2000 论文集(正在出版)。
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

KAWABE Jun其他文献

KAWABE Jun的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('KAWABE Jun', 18)}}的其他基金

Nonlinear integrals in nonadditive measure theory and their study based on a perturbative method
非加性测度论中的非线性积分及其基于微扰法的研究
  • 批准号:
    26400130
  • 财政年份:
    2014
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Topological Structure of Weak Convergence of Nonadditive Measures
非相加测度弱收敛的拓扑结构
  • 批准号:
    23540192
  • 财政年份:
    2011
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
New smoothness conditions on Riesz spaces with applications to nonadditive measures and Choquet integrals
Riesz 空间上的新平滑条件及其在非加性测度和 Choquet 积分中的应用
  • 批准号:
    20540163
  • 财政年份:
    2008
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Non-additive measure theory in Riesz spaces with certain smoothenss conditions
具有一定平滑条件的Riesz空间中的非可加测度论
  • 批准号:
    18540166
  • 财政年份:
    2006
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Weak order convergence of Riesz space-valued positive vector measures with applications
Riesz空间值正向量测度的弱阶收敛及其应用
  • 批准号:
    15540162
  • 财政年份:
    2003
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Weak convergence of vector measures with applications to real analysis
矢量测量与实际分析应用的收敛性较弱
  • 批准号:
    11640160
  • 财政年份:
    1999
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Weak convergence of vector measures on topological spaces and its applications
拓扑空间矢量测度的弱收敛及其应用
  • 批准号:
    09640173
  • 财政年份:
    1997
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)

相似海外基金

The tensor product of Beck modules
Beck模块的张量积
  • 批准号:
    563139-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 2.05万
  • 项目类别:
    University Undergraduate Student Research Awards
Tensor-product algorithms for quantum control problems
量子控制问题的张量积算法
  • 批准号:
    EP/P033954/1
  • 财政年份:
    2018
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Research Grant
Tensor product numerical methods for high-dimensional problems in probability and quantum calculations
概率和量子计算中高维问题的张量积数值方法
  • 批准号:
    EP/M019004/1
  • 财政年份:
    2016
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Fellowship
Alternatives to the tensor product in wavelet construction and beyond
小波构造及其他领域中张量积的替代方案
  • 批准号:
    1115870
  • 财政年份:
    2011
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Continuing Grant
Quantum entanglement for tensor product states and numerical renormalization groups
张量积态和数值重正化群的量子纠缠
  • 批准号:
    23540442
  • 财政年份:
    2011
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Implementation of explicit SU(2)-invariance in tensor product states and applications to renormalization group calculations
张量积状态中显式 SU(2) 不变性的实现及其在重正化群计算中的应用
  • 批准号:
    91564163
  • 财政年份:
    2008
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Research Grants
New Trend in DMRG - from the Optimization of the Tensor Product Decomposition
DMRG新趋势——来自张量积分解的优化
  • 批准号:
    17540327
  • 财政年份:
    2005
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Adaptive solution of coupled cluster equation and tensor product approximation of two-electron integrals
耦合簇方程的自适应解与二电子积分张量积近似
  • 批准号:
    5412684
  • 财政年份:
    2003
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Priority Programmes
Analysis of Higher Dimensional Systems by use of the Tensor Product Variational Approach
使用张量积变分方法分析高维系统
  • 批准号:
    13640383
  • 财政年份:
    2001
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Branching Rules and Tensor Product Decompositions in Algebraic Lie Theory
代数李理论中的分支规则和张量积分解
  • 批准号:
    9801442
  • 财政年份:
    1998
  • 资助金额:
    $ 2.05万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了