Riemannian metrics with lower curvature bounds. Special symplectic connections and symplectic realizations.

具有下曲率界限的黎曼度量。

基本信息

项目摘要

Riemannian metrics with lower curvature bounds: Among the fundamental questions in differential geometry is the determination of obstructions to the existence or the description of new examples of manifolds with given lower curvature bounds. In particular, it is of interest to investigate obstructions to or examples of metrics with positive, nonnegative or almost nonnegative sectional or Ricci curvature. The class of manifolds which are of interest here are those which admit a group action of low cohomogeneity, in particular those of cohomogeneity at most two.Symplectic connections and symplectic realizations: A connection an a manifold is the description of the parallel transport of tangent vectors along differentiable paths. If the manifold is symplectic, then we call the connection symplectic if parallel transport preserves the symplectic form. We investigate symplectic connections whose curvature satisfies certain conditions, namely either the vanishing of some part of the curvature, or restrictions on its holonomy group. There is a canonical method to construct such connections locally. This method is based on the local existence of symplectic realization of certain Poisson structures related to quaternionic symmetric spaces. The aim is to determine in which case there can be a global realization and hence when the local obstruction methods can be extended globally. In particular, it is important to decide if the Poisson structures involved admit a realization by a symplectic groupoid.
具有下曲率界的黎曼度量:微分几何中的基本问题之一是确定存在的障碍或描述具有给定下曲率界的流形的新例子。特别地,研究具有正、非负或几乎非负截面曲率或里奇曲率的度量的障碍或例子是有趣的。我们感兴趣的一类流形是那些具有低同质性的群作用的流形,特别是那些最多只有两个同质性的流形。辛连接和辛实现:流形上的连接是对切向量沿可微路径平行移动的描述。如果流形是辛的,那么我们称这种连接是辛的,如果平行移动保持辛形式。我们研究了曲率满足某些条件的辛连接,即曲率的某些部分消失或对其完整群的限制。有一种规范的方法可以在局部构造这样的连接。该方法基于与四元数对称空间相关的泊松结构的辛实现的局部存在性。目的是确定在哪种情况下可以实现全局实现,从而确定何时可以对局部阻塞方法进行全局扩展。特别地,重要的是决定所涉及的泊松结构是否允许一个辛类群来实现。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Lorenz Schwachhöfer其他文献

Professor Dr. Lorenz Schwachhöfer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Lorenz Schwachhöfer', 18)}}的其他基金

Geometric methods in statistical learning theory and applications
统计学习中的几何方法理论与应用
  • 批准号:
    391056645
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似海外基金

New metrics to measure and track fauna community condition in Australia
衡量和跟踪澳大利亚动物群落状况的新指标
  • 批准号:
    LP230100179
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Linkage Projects
Research on various canonical Kaehler metrics by means of energy functionals and non-Archimedean metrics
利用能量泛函和非阿基米德度量研究各种典型凯勒度量
  • 批准号:
    23K03120
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Canonical Kahler metrics and complex Monge-Ampere equations
规范卡勒度量和复杂的 Monge-Ampere 方程
  • 批准号:
    2303508
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Metrics for Brain Controlled Communication: A comprehensive review of clinical outcome assessments for communication brain computer interfaces in amyotrophic lateral sclerosis
脑控制通信指标:肌萎缩侧索硬化症通信脑机接口临床结果评估的全面综述
  • 批准号:
    10848139
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Resource Development Core
资源开发核心
  • 批准号:
    10747706
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
IMR: MM-1C: Methods and Metrics for IPv6 Internet Scanning
IMR:MM-1C:IPv6 互联网扫描的方法和指标
  • 批准号:
    2319315
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Testing the accuracy of eye tracking as a screening tool for ASD in the general population
测试眼动追踪作为普通人群自闭症谱系障碍筛查工具的准确性
  • 批准号:
    10638066
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Assessing Diffusion MRI Metrics for Detecting Changes of Synaptic Density in Alzheimer's Disease
评估弥散 MRI 指标以检测阿尔茨海默病突触密度的变化
  • 批准号:
    10739911
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Geometry of Wasserstein and Transportation Cost Metrics
Wasserstein 的几何形状和运输成本指标
  • 批准号:
    2342644
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Geometry of Wasserstein and Transportation Cost Metrics
Wasserstein 的几何形状和运输成本指标
  • 批准号:
    2247582
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了