Representations whose orbit spaces have boundary
轨道空间有边界的表示
基本信息
- 批准号:5407385
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Priority Programmes
- 财政年份:2003
- 资助国家:德国
- 起止时间:2002-12-31 至 2008-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Representations of compact Lie groups play a crucial role all over mathematics and physics. Although representations are classified by their highest weight, one often faces the hard problem to relate a priori knowledge on the geometry of a representation to its highest weight. We plan to classify representations whose orbit spaces have boundary. Since these representations occur naturally in different contexts of mathematics, a classification can be the starting point for solving various other problems. In a second project of the proposal we are concerned with non-collapsing phenomena. A non-collapsing phenomenon is present if a certain class of Riemannian manifolds has a uniform lower bound on the volume. Once one has established such a result, the understanding of this class of Riemannian manifolds as a whole improves significantly. Many recent progress has been made in the field. We propose that the recent progress should allow to attack the Klingenberg Sakai conjecture, which asserts that for each manifold a non-collapsing phenomenon is present in the moduli space of positively pinched metrics.
紧李群的表示在数学和物理中起着至关重要的作用。虽然表示按其最高权重进行分类,但人们经常面临将表示的几何形状的先验知识与其最高权重相关联的难题。我们计划分类表示的轨道空间有边界。由于这些表示在不同的数学环境中自然发生,因此分类可以成为解决各种其他问题的起点。在该提案的第二个项目中,我们关注的是非坍缩现象。如果某类黎曼流形具有一致的体积下界,则存在非坍缩现象。一旦建立了这样一个结果,对这类黎曼流形的理解就有了显著的提高。最近在这一领域取得了许多进展。我们建议,最近的进展应该允许攻击Klingenberg Sakai猜想,它断言,对于每个流形的非崩溃现象是目前在模空间的正捏度量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Burkhard Wilking其他文献
Professor Dr. Burkhard Wilking的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Burkhard Wilking', 18)}}的其他基金
Verbesserte Version des Durchmesserstarrheitssatzes von Grove und Gromoll, sowie Beispiele von Mannigfaltigkeiten mit positiver Schnittkrümmung
Grove 和 Gromoll 直径刚性定理的改进版本,以及具有正交曲率的流形示例
- 批准号:
5200134 - 财政年份:1999
- 资助金额:
-- - 项目类别:
Research Fellowships
相似海外基金
Medical Assistance in Dying for Persons whose natural death is not reasonably foreseeable: Healthcare provider experiences
为无法合理预见自然死亡的人提供死亡医疗援助:医疗保健提供者的经验
- 批准号:
485608 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Miscellaneous Programs
Exploring 'The Research Experience': Inviting those whowork in research and whose who participate in research their experience and their exp
探索“研究经历”:邀请那些从事研究工作以及参与研究的人分享他们的经历和经验
- 批准号:
2745957 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
Boundary element method for domains whose Green's function is not available
格林函数不可用域的边界元法
- 批准号:
21K19764 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Whose role is it to act on climate resilience?: Implementing Yorkshire's Climate Action Plan with Leeds City Council
谁在气候复原力方面发挥作用?:与利兹市议会实施约克郡气候行动计划
- 批准号:
NE/W006987/1 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Research Grant
Systematic identification for yeast genes whose gene copy number variants work adaptively
系统鉴定基因拷贝数变异适应性发挥作用的酵母基因
- 批准号:
21J12451 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
Functional Analysis of RBM20 Whose Mutation Causes Dilated Cardiomyopathy
RBM20突变导致扩张型心肌病的功能分析
- 批准号:
20K21385 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Research (Exploratory)
Whose crisis?: The global COVID-19 crisis from the perspective of communities in Africa
谁的危机?:从非洲社区的角度看全球 COVID-19 危机
- 批准号:
AH/V007947/1 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Research Grant
Traveling fronts whose cross sections are convex shapes with major axes and minor axes in balanced bistable reaction-diffusion equations
平衡双稳态反应扩散方程中截面为凸形且具有长轴和短轴的行进锋
- 批准号:
20K03702 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mechanism of adaptation to a low-protein diet observed among the indigenous population of New Guinea Island, whose primary sustenance revolves around sago starch.
在新几内亚岛土著居民中观察到的低蛋白饮食适应机制,他们的主要食物是西米淀粉。
- 批准号:
20K11560 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Transaction-based credit risk engine, enabling sustainable and socially responsible lending to segments of the economy whose vulnerability has been exposed and exacerbated by COVID-19.
基于交易的信用风险引擎,能够向因 COVID-19 暴露和加剧脆弱性的经济领域提供可持续且对社会负责的贷款。
- 批准号:
87455 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Collaborative R&D