希薄気体中の物体の非定常運動と履歴効果

稀气体中物体的不稳定运动和滞后效应

基本信息

  • 批准号:
    12J02418
  • 负责人:
  • 金额:
    $ 0.58万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
  • 财政年份:
    2012
  • 资助国家:
    日本
  • 起止时间:
    2012 至 无数据
  • 项目状态:
    已结题

项目摘要

当該研究の目的は希薄気体中を物体が非定常運動することによって生じる履歴の性質とその影響を調べることである.履歴の効果は通常の流体力学の枠組みで古くから研究されているが(例えばバセット履歴項),希薄気体における履歴の研究は気体分子間の衝突が無視できるほどに希薄な極限を除いて未だ成されていない.平成24年度は当該研究に関する以下の二点に取り組んだ.1希薄気体の移動境界問題の研究当該研究が対象とする気体中の物体の非定常運動を扱うためには,希薄気体の移動境界問題を解析する必要がある.通常の流体力学の移動境界問題と異なり,希薄気体の移動境界問題では気体分子の速度分布関数に種々の特異性が現れるという困難さがある.移動境界問題特有の性質に注目するため,支配方程式としてボルツマン方程式のモデルであるBhatnagar-Gross-Krookモデルを採用し,形式的な議論をベースに速度分布関数の特異性の発生過程を明らかにした.これらの特異性は従来の計算手法では正確に扱うことが出来ないため,今回特性線積分法をもとにした新しい計算手法を提案した.2振動平板によって誘起される希薄気体流当該研究の最終目標は,希薄気体流と物体の運動の連成問題の解析である.これに先立ち,垂直方向に強制振動する境界(振動平板)が誘起する流れの性質を調べた.気体の圧力が常圧程度でも,振動平板の振動数が気体分子同士の平均衝突頻度に比べて無視できないほど大きいとき(高周波数振動),気体は希薄とみなさなければならない.このような条件の下で,(1)有限振幅の振動平板による非線形音響波の遠方への伝播と(2)振動平板と静止平板からなる平行二平板間の気体の振舞の二種類の希薄流れを,1で提案した計算手法を用いて解析した.
The aim of this study is to adjust the influence of unsteady motion on the properties of thin bodies. The results of this study are that the general fluid dynamics of the fluid mechanics of the fluid mechanics of the fluid The following two points are selected for this study in 2004:1. Research on the problem of motion boundary of thin bodies. In general, the problem of moving boundary of fluid mechanics is different, and it is difficult to solve the problem of moving boundary of thin body. The characteristic properties of the moving boundary problem are noted, the governing equations are used, the form of the argument is used, and the specific generation process of the velocity distribution relationship is disclosed. 2. The final goal of this study is to analyze the motion of thin body flow and the problem of the motion of thin body flow. In this case, vertical stress vibration (vibrating plate) induces flow and adjusts its properties. The pressure of the gas is constant, the vibration frequency of the vibrating plate is higher than that of the average collision frequency of the gas molecules (high frequency vibration), and the gas is expected to be thinner. Under these conditions,(1) the propagation of nonlinear acoustic waves in the distance between vibrating plates of finite amplitude (2) two kinds of thin flow between vibrating plates and stationary plates (3) the calculation method of finite amplitude (4) is proposed.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Numerical analysis of moving boundary problems in kinetic theory
运动理论中动边界问题的数值分析
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Tsuji;K. Aoki
  • 通讯作者:
    K. Aoki
Numerical analysis of nonlinear acoustic wave propagation in a rarefied gas
稀薄气体中非线性声波传播的数值分析
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

辻 徹郎其他文献

Verification of the phonon relaxation time approximation by probing the relaxation process of a single excited mode
通过探测单激发模式的弛豫过程验证声子弛豫时间近似
  • DOI:
    10.1103/physrevb.100.214116
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    瀬戸浦 健仁;辻 徹郎;伊都 将司;川野 聡恭;宮坂 博;Takuma Hori
  • 通讯作者:
    Takuma Hori

辻 徹郎的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('辻 徹郎', 18)}}的其他基金

光ピンセット流速計による境界近傍流れの計測とすべり現象の解明
使用光镊电流计测量边界附近的流动并阐明滑移现象
  • 批准号:
    24K00803
  • 财政年份:
    2024
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Development of the method of characteristics for kinetic equations and its application to flows with complicated boundaries
动力学方程特征方法的发展及其在复杂边界流动中的应用
  • 批准号:
    22K18770
  • 财政年份:
    2022
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)

相似海外基金

空間多次元移動境界問題の数値解法の新展開
空间多维动边界问题数值解的新进展
  • 批准号:
    17654027
  • 财政年份:
    2005
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
移動境界問題としての液状化フロントの進展解析
液化锋面动边界问题演化分析
  • 批准号:
    12875086
  • 财政年份:
    2000
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Exploratory Research
レベルセット法による移動境界問題の数値解析
水平集法对移动边界问题的数值分析
  • 批准号:
    11740067
  • 财政年份:
    1999
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
移動境界問題に対する実用的数値解法とその数学的誤差評価
动边界问题实用数值求解方法及其数学误差评估
  • 批准号:
    09740147
  • 财政年份:
    1997
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
移動境界問題に対する数値解析手法の開発と混相流への適用
移动边界问题数值分析方法的发展及其在多相流中的应用
  • 批准号:
    09750182
  • 财政年份:
    1997
  • 资助金额:
    $ 0.58万
  • 项目类别:
    Grant-in-Aid for Encouragement of Young Scientists (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了