Analysis on Schroedinger operators with delta-like magnetic fields on Riemannian manifolds
黎曼流形上类δ磁场薛定谔算子分析
基本信息
- 批准号:23740122
- 负责人:
- 金额:$ 2.16万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Young Scientists (B)
- 财政年份:2011
- 资助国家:日本
- 起止时间:2011 至 2013
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Aharonov-Bohm effect is known as an observable quantum effect by the magnetic vector potential, which is introduced in the classical electrodynamics only as a computational tool. In this subject, we study the effect of the Aharonov-Bohm magnetic fields (delta-like magnetic fields) on the spectrum of the Schroedinger operators on Riemannian manifolds. Especially, we consider the Schroedinger operators on the hyperbolic plane with a constant magnetic field plus the Aharonov-Bohm magnetic fields placed periodically on a hyperbolic lattice, and study the threshold value of the magnetic fluxes for the existence of the infinitely degenerated Landau levels. Moreover, we consider the Schroedinger operators on the Euclidean plane with two quantized Aharonov-Bohm magnetic fields, and give an explicit form of the eigenfunctions in terms of the Mathieu functions.
Aharonov-Bohm效应是通过磁矢势可观测到的量子效应,磁矢势在经典电动力学中仅作为计算工具引入。在本课题中,我们研究了Aharonov-Bohm磁场(类δ磁场)对Riemannian流形上Schroedinger算子谱的影响。特别地,我们考虑了双曲平面上的Schroedinger算子,在双曲晶格上周期性地放置Aharonov-Bohm磁场和恒定磁场,研究了无限简并朗道能级存在的磁通阈值.此外,我们还考虑了两个量子化Aharonov-Bohm磁场下的Euclidean平面上的Schroedinger算子,并给出了本征函数的Mathieu函数的显式表示。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Solvable models in two-solenoidal Aharonov-Bohm magnetic fields on the Euclidean plane, in Spectral and Scattering theory and Related Topics (ed. F. Hiroshima)
欧几里德平面上两个螺线管阿哈罗诺夫-玻姆磁场中的可解模型,光谱和散射理论及相关主题(F. Hiroshima 编)
- DOI:
- 发表时间:2014
- 期刊:
- 影响因子:0
- 作者:Samuel Senti;Hiroki Takahasi;Hiromichi Ohno;Samuel Senti and Hiroki Takahasi;大野博道;大野 博道;Samuel Senti and Hiroki Takahasi;Yong Moo Chung and Hiroki Takahasi;Takuya Mine
- 通讯作者:Takuya Mine
Upper Bound for the Bethe–Sommerfeld Threshold and the Spectrum of the Poisson Random Hamiltonian in Two Dimensions
贝特-索末菲阈值的上限和二维泊松随机哈密顿量的谱
- DOI:10.1007/s00023-012-0180-1
- 发表时间:2013
- 期刊:
- 影响因子:0
- 作者:M. Kaminaga;T. Mine
- 通讯作者:T. Mine
Landau levels on the hyperbolic plane in the presence of Aharonov–Bohm fields
存在阿哈罗诺夫-玻姆场时双曲平面上的朗道能级
- DOI:10.1016/j.jfa.2012.06.002
- 发表时间:2012
- 期刊:
- 影响因子:1.7
- 作者:T. Mine;Yuji Nomura
- 通讯作者:Yuji Nomura
楕円座標を用いた散乱振幅の計算
使用椭圆坐标计算散射幅度
- DOI:
- 发表时间:2014
- 期刊:
- 影响因子:0
- 作者:Samuel Senti;Hiroki Takahasi;Hiromichi Ohno;Samuel Senti and Hiroki Takahasi;大野博道;大野 博道;Samuel Senti and Hiroki Takahasi;Yong Moo Chung and Hiroki Takahasi;Takuya Mine;Hiroki Takahasi;Masahiro Kaminaga and Takuya Mine;Hiroki Takahasi;Takuya Mine and Yuji Nomura;Hiroki Takahasi and Qiudong Wang;Masahiro Kaminaga and Takuya Mine;Manabu AKAHO;Hiroki Takahasi and Yong Moo Chung;峯 拓矢
- 通讯作者:峯 拓矢
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MINE Takuya其他文献
MINE Takuya的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MINE Takuya', 18)}}的其他基金
Analysis of Schrodinger operators with random δ magnetic fields
随机 δ 磁场薛定谔算子的分析
- 批准号:
20740093 - 财政年份:2008
- 资助金额:
$ 2.16万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
相似海外基金
Mathematical Analysis of Free Boundary Problems in EMHD and Related Topics
EMHD 中自由边界问题的数学分析及相关主题
- 批准号:
26400176 - 财政年份:2014
- 资助金额:
$ 2.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical analysis of the non-Newtonian fluids flow
非牛顿流体流动的数学分析
- 批准号:
23654055 - 财政年份:2011
- 资助金额:
$ 2.16万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
汎関数解析学とファインマン経路積分の数学的研究
泛函分析和费曼路径积分的数学研究
- 批准号:
21654023 - 财政年份:2009
- 资助金额:
$ 2.16万 - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Complex System Based Mathematical Analysis of Non-normal Distribution Family and Stochastic Differential Equation and Their Applications to Risk Management
基于复杂系统的非正态分布族和随机微分方程的数学分析及其在风险管理中的应用
- 批准号:
19510164 - 财政年份:2007
- 资助金额:
$ 2.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical analysis of stability ofviscous incompressible flows in several unbounded domains
多个无界域粘性不可压缩流稳定性的数学分析
- 批准号:
16540143 - 财政年份:2004
- 资助金额:
$ 2.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical analysis on the structure of solutions for the fundamental systems of equations in continuum mechanics
连续介质力学基本方程组解结构的数学分析
- 批准号:
15340050 - 财政年份:2003
- 资助金额:
$ 2.16万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mathematical analysis of thermal convection equations
热对流方程的数学分析
- 批准号:
14340057 - 财政年份:2002
- 资助金额:
$ 2.16万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mathematical Analysis on Change of Patterns by Anisotropy and Diffusion
各向异性和扩散引起的图案变化的数学分析
- 批准号:
14204011 - 财政年份:2002
- 资助金额:
$ 2.16万 - 项目类别:
Grant-in-Aid for Scientific Research (A)
Mathematical analysis of System Modeling and their applications
系统建模的数学分析及其应用
- 批准号:
14540102 - 财政年份:2002
- 资助金额:
$ 2.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical Analysis to Nonlinear Partial Differential Equations in Mathematical Science and Its Applications
数学科学中非线性偏微分方程的数学分析及其应用
- 批准号:
13440053 - 财政年份:2001
- 资助金额:
$ 2.16万 - 项目类别:
Grant-in-Aid for Scientific Research (B)