Data Assimilation and Ensemble Modelling for the Improvement of Short Range Quantitative Precipitation Forecasts (DAQUA)

用于改进短程定量降水预报 (DAQUA) 的数据同化和集合建模

基本信息

  • 批准号:
    5426639
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Priority Programmes
  • 财政年份:
    2004
  • 资助国家:
    德国
  • 起止时间:
    2003-12-31 至 2010-12-31
  • 项目状态:
    已结题

项目摘要

We propose the improvement of short range quantitative precipitation forecasting by regional high resolution weather forecast models. We will combine improved regional ensemble modelling with best member selection based on the most recent remote sensing information, with further broadening and narrowing of the distribution by a new evolutionary approach, followed by improved data assimilation and further forecast integration. The former step will introduce a Monte Carlo technique to invert a highly nonlinear and critically discontinuous microphysical problem in a novel way in cloud and rain assimilation. Physical initialisation techniques, nudging techniques and variational approaches with the most timely available information from remote sensing including Radar reflectivities, cloud parameters, and water vapour content will be employed. With this stacked procedure we expect to substantially reduce the influence of phase errors in the background field, which currently impede the successful assimilation of observations for short range precipitation forecasting by regional numerical weather forecast models. The project will establish an advanced capability for ensemble forecasting in the German research community. Validation efforts will explore and quantify the sources of uncertainty in forecasts especially under convective conditions. The differing requirements for the forecasting System under different meteorological conditions will be explored in the first instance by examining a set of case studies of convective storms in environments with orography of varying degrees of steepness. Some of the case studies will be orientated around the likely location of the field experiment, to aid in planning of the operations and to prepare for real-time forecasting.
提出了利用区域高分辨率天气预报模式改进短时降水定量预报的方法。我们将改进的区域集合模型与基于最新遥感信息的最佳成员选择相结合,通过一种新的进化方法进一步扩大和缩小分布,然后改进数据同化和进一步的预测集成。前一步将引入蒙特卡罗技术,以一种新颖的方式反演云和雨同化中的高度非线性和临界不连续微物理问题。将采用物理初始化技术、助推技术和从遥感获得的最及时信息的变分方法,包括雷达反射率、云参数和水蒸气含量。利用这种叠加过程,我们期望大大减少背景场相位误差的影响,这一影响目前阻碍了区域数值天气预报模式成功同化观测资料用于短期降水预报。该项目将在德国研究界建立一种综合预报的先进能力。验证工作将探索和量化预报中不确定性的来源,特别是在对流条件下。在不同的气象条件下,对预报系统的不同要求将首先通过一系列在不同陡峭地形环境下的对流风暴案例研究来探讨。一些个案研究将围绕实地试验的可能地点进行,以协助规划行动和为实时预测作准备。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. George Craig其他文献

Professor Dr. George Craig的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. George Craig', 18)}}的其他基金

NAWDEX
北美维德克斯
  • 批准号:
    316736766
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Infrastructure Priority Programmes
Combined airborne lidar measurments of moisture transport and cirrus properties: HALO-LIDAR
结合机载激光雷达测量水分传输和卷云特性:HALO-LIDAR
  • 批准号:
    179422122
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Infrastructure Priority Programmes
Large-scale and local control of severe weather: Towards adaptive ensemble forecasting (ADENS)
恶劣天气的大规模和局部控制:走向自适应集合预报(ADENS)
  • 批准号:
    60884417
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Research Units
Quantitative precipitation forecasts, ensemble forecast modelling, Bayesian chains, evolutionary algorithms, variational assimilation, physical initialisation nudging, application of Radar and satellite data
定量降水预报、集合预报建模、贝叶斯链、进化算法、变分同化、物理初始化助推、雷达和卫星数据的应用
  • 批准号:
    5426645
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes
Quantitative evaluation of regional precipitation forecasts using multi-dimensional remote sensing observations
利用多维遥感观测定量评估区域降水预报
  • 批准号:
    5426619
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似海外基金

Study on ensemble forecast using a high-resolution ocean data assimilation system
高分辨率海洋资料同化系统集合预报研究
  • 批准号:
    23K13174
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CAREER: Ensemble Kalman Methods and Bayesian Optimization in Inverse Problems and Data Assimilation
职业:反问题和数据同化中的集成卡尔曼方法和贝叶斯优化
  • 批准号:
    2237628
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Development of an ensemble data assimilation method to be introduced into a nation-wide distributed runoff model
开发一种集成数据同化方法,将其引入全国分布式径流模型
  • 批准号:
    22H01600
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Methods for Nonlinear, Non-Gaussian, and Data-Driven Ensemble Data Assimilation in Large-Scale Applications
大规模应用中非线性、非高斯和数据驱动的集合数据同化方法
  • 批准号:
    2152814
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Development of ensemble-based inflation schemes for convective-scale all-sky satellite radiance data assimilation
开发基于集合的膨胀方案,用于对流规模全天卫星辐射数据同化
  • 批准号:
    20K22362
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Real-time ensemble data assimilation for urban wind simulation using GPU supercomputers
使用 GPU 超级计算机进行城市风模拟的实时集合数据同化
  • 批准号:
    19K24359
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Developing an Ensemble Kalman Filter calibration and data assimilation (EnC/DA) approach for integrating geodetic and remote sensing data into a global hydrological model
开发集成卡尔曼滤波器校准和数据同化 (EnC/DA) 方法,将大地测量和遥感数据集成到全球水文模型中
  • 批准号:
    397590167
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Research Units
Lake-effect Snow: Understanding Predictability and Dynamics through Ensemble-Based Convective-Permitting Data Assimilation, Modeling, and Sensitivity Analysis
湖泊效应雪:通过基于集合的对流允许数据同化、建模和敏感性分析来了解可预测性和动力学
  • 批准号:
    1745243
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CyberSEES: Type 1: Cyber-Enabled Ensemble Data Assimilation for Drought Monitoring, Forecasting and Recovery
Cyber​​SEES:类型 1:用于干旱监测、预报和恢复的网络集成数据同化
  • 批准号:
    1830955
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Extraction of coupled atmosphere-ocean modes using ensemble-based data assimilation and its application to short-range prediction
使用基于集合的数据同化提取大气-海洋耦合模式及其在短程预测中的应用
  • 批准号:
    17K05663
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了