ホップ代数を用いたスーパー代数群の研究

用Hopf代数研究超代数群

基本信息

  • 批准号:
    14J02022
  • 负责人:
  • 金额:
    $ 1.22万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
  • 财政年份:
    2014
  • 资助国家:
    日本
  • 起止时间:
    2014-04-25 至 2016-03-31
  • 项目状态:
    已结题

项目摘要

本研究の目的はホップ代数的手法を用いることで,これまで個別にされてきたスーパー代数群の表現論を統一的に見通しよく研究することである.ここに基礎体の標数は任意である.付随する通常の代数群が分裂簡約であるようなスーパー代数群を"準簡約スーパー群"と呼ぶことにする.前年度まで研究してきたシュヴァレー・スーパー群,一般線型スーパー群,BrundanとKleshchev(2003)が研究したスーパー群Q(n)はみな準簡約であり,準簡約スーパー群のクラスは重要な例を含んでいると分かる.今年度は前年度の結果を含むより一般の結果として,準簡約スーパー群の既約表現の構成と分類,およびコホモロジーの研究等を組織的に行なった.得られた研究成果は学位論文に纏めた.以下にその詳細を説明する.基礎体が標数0の代数閉体の場合,準簡約スーパー群Gの既約表現の構成は既にSerganova(2011)によってなされていたが,その手法はスーパー・リー代数Lie(G)を用いたものであり,基礎体が正標数のときは同様の構成を行うことはできないという問題点があった.本研究ではGの表現とスーパー・ハイパー代数hy(G)の可積分表現との間の一対一対応を示すことによりこの問題を解決し,任意標数の体上で既約表現の構成に成功した.またGが「よい放物スーパー部分群」を持てば,既約表現をパラメータ付けるウェイトの集合が完全に決定されることを示した.この条件を満たすものは一般線型スーパー群やI型のシュヴァレー・スーパー群などがある.さらにこのとき高次のコホモロジーが消滅するという"ケンプ消滅定理"のスーパー版が成立することが分かった.その系としてオイラー指標を書き下すことにも成功した.一般線型スーパー群の場合はZubkov(2006)が具体的な行列表示を用いて示していたが,本研究ではそれとは異なる手法でより理論的に導出したことになる.
The purpose of this study is to study the representation theory of algebraic groups individually and uniformly. The number of basic objects is arbitrary. The algebraic group is divided into two groups: quasi-reduction group and quasi-reduction group. In the previous year, Brundan and Kleshchev(2003) studied the group Q(n) and quasi-reduced the group Q(n). This year's results include general results, quasi-reduced performance, classification, research, etc. The results of this research are as follows: The following is a detailed description. In the case of algebraic closed bodies of base bodies with index number 0, the composition of the reduced representation of quasi-reduced group G is reversed by Serganova(2011), and the method is reversed by Lie(G). In this study, we solve the problem of the one-to-one representation of G and the integrable representation of the Sipra-Hiipra-algebra hy(G), and successfully construct the irreducible representation of any scalar number over the body. The expression "the middle part of the object" is maintained, and the expression "the middle part of the object" is completely determined. This condition is applicable to both general linear models and I-type models. The first edition of the theory of annihilation is established. The system was successful. Zubkov(2006), a general linear group, uses different methods to derive the specific matrix representation.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Steinberg's tensor product theorem for Chevalley supergroups
Chevalley 超群的斯坦伯格张量积定理
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Goto;T. Matsuda;N. Kubota;柴田大樹
  • 通讯作者:
    柴田大樹
スーパー可換ホップ代数の余フロベニウス性について
超交换Hopf代数的余Frobenius性质
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Matsuda;K. Goto;N. Ohno;米田耕三;柴田大樹;米田耕三;柴田大樹;柴田大樹
  • 通讯作者:
    柴田大樹
ホップ代数と(スーパー)代数群についてI, II, III
关于 Hopf 代数和(超)代数群 I、II、III
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Akira Masuoka;Taiki Shibata;柴田大樹
  • 通讯作者:
    柴田大樹
スーパー代数群のコホモロジーについて
论超代数群的上同调
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    K. Goto;T. Matsuda;N. Kubota;Daisuke Hirata;柴田大樹
  • 通讯作者:
    柴田大樹
On irreducible representations of quasireductive supergroups
关于拟还原超群的不可约表示
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    T. Matsuda;K. Goto;N. Ohno;柴田大樹
  • 通讯作者:
    柴田大樹
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

柴田 大樹其他文献

柴田 大樹的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('柴田 大樹', 18)}}的其他基金

A Hopf-algebraic approach to irreducible representations of algebraic supergroups
代数超群不可约表示的 Hopf 代数方法
  • 批准号:
    22K13905
  • 财政年份:
    2022
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists

相似海外基金

REU Site: Research Experiences for Undergraduates in Algebra and Discrete Mathematics at Auburn University
REU 网站:奥本大学代数和离散数学本科生的研究经验
  • 批准号:
    2349684
  • 财政年份:
    2024
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Continuing Grant
Conference: Underrepresented Students in Algebra and Topology Research Symposium (USTARS)
会议:代数和拓扑研究研讨会(USTARS)中代表性不足的学生
  • 批准号:
    2400006
  • 财政年份:
    2024
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Standard Grant
Positive and Mixed Characteristic Birational Geometry and its Connections with Commutative Algebra and Arithmetic Geometry
正混合特征双有理几何及其与交换代数和算术几何的联系
  • 批准号:
    2401360
  • 财政年份:
    2024
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Standard Grant
On combinatorics, the algebra, topology, and geometry of a new class of graphs that generalize ordinary and ribbon graphs
关于组合学、一类新图的代数、拓扑和几何,概括了普通图和带状图
  • 批准号:
    24K06659
  • 财政年份:
    2024
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Studies in Categorical Algebra
分类代数研究
  • 批准号:
    2348833
  • 财政年份:
    2024
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Continuing Grant
RTG: Applied Algebra at the University of South Florida
RTG:南佛罗里达大学应用代数
  • 批准号:
    2342254
  • 财政年份:
    2024
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Continuing Grant
Conference: Research School: Bridges between Algebra and Combinatorics
会议:研究学院:代数与组合学之间的桥梁
  • 批准号:
    2416063
  • 财政年份:
    2024
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Standard Grant
Conference: Fairfax Algebra Days 2024
会议:2024 年费尔法克斯代数日
  • 批准号:
    2337178
  • 财政年份:
    2024
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Standard Grant
CAREER: Leveraging Randomization and Structure in Computational Linear Algebra for Data Science
职业:利用计算线性代数中的随机化和结构进行数据科学
  • 批准号:
    2338655
  • 财政年份:
    2024
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Continuing Grant
Stable Homotopy Theory in Algebra, Topology, and Geometry
代数、拓扑和几何中的稳定同伦理论
  • 批准号:
    2414922
  • 财政年份:
    2024
  • 资助金额:
    $ 1.22万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了