Spectral curves of polygons and triangulated tori

多边形和三角环面的光谱曲线

基本信息

  • 批准号:
    5443959
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Research Units
  • 财政年份:
    2005
  • 资助国家:
    德国
  • 起止时间:
    2004-12-31 至 2010-12-31
  • 项目状态:
    已结题

项目摘要

We investigate an approach to discrete conformality based on the notion of holomorphic line bundles over "discrete surfaces", that is, over vertex sets of triangulated surfaces with black and white colored faces. As a special case, we give a reinterpretation of Dynnikov's and Novikov's approach to conformal maps to S2 = CP1 which reveals it as the first example of a theory of discrete holomorphicity that is at the same time Möbius-invariant and governed by linear equations.We introduce Darboux transformations for arbitrary immersions of discrete surfaces into S4 = HP1 which can be interpreted as a time discrete Davey-Stewartson flow on the space of immersions. For generic immersions of discrete tori with regular combinatorics, we show that the space of Darboux transformations can be desingularized to a compact Riemann surface (the spectral curve) thus making available powerful methods from the theory of algebraically completely integrable systems.In the second period, beyond the soliton theory of triangulated surfaces, our investigations will concentrate on developing a definition of conformality for immersions of "discrete Riemann surfaces". Moreover, we plan to study a new class of "discrete minimal surfaces" that appears naturally in the context of our investigations.
我们基于“离散曲面”上的全纯线束的概念,研究了一种离散共态的方法,即在带有黑色和白色面的三角形曲面的顶点集上。作为一个特例,我们重新解释了Dynnikov和Novikov对S2 = CP1的共形映射的方法,揭示了它是离散全纯理论的第一个例子,它同时是Möbius-invariant和由线性方程控制的。我们在S4 = HP1中引入离散曲面任意浸入的Darboux变换,该变换可以解释为浸入空间上的时间离散Davey-Stewartson流。对于具有正则组合的离散环面的一般浸没,我们证明了达布变换的空间可以解广义化为紧致的黎曼曲面(谱曲线),从而从代数完全可积系统的理论中获得了强有力的方法。在第二阶段,除了三角曲面的孤子理论之外,我们的研究将集中于开发“离散黎曼曲面”浸入的共形性的定义。此外,我们计划研究一类新的“离散最小曲面”,这种曲面在我们的研究中自然出现。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Ulrich Pinkall其他文献

Professor Dr. Ulrich Pinkall的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Ulrich Pinkall', 18)}}的其他基金

Constant Mean Curvature Surfaces and Smoke Ring Flow
恒定平均曲率表面和烟环流
  • 批准号:
    179877155
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Geometric Problems and Special PDEs
几何问题和特殊偏微分方程
  • 批准号:
    5106294
  • 财政年份:
    1998
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

Lienard系统的不变代数曲线、可积性与极限环问题研究
  • 批准号:
    12301200
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Quantifying Genetic and Ecological Constraints on the Evolution of Thermal Performance Curves
职业:量化热性能曲线演变的遗传和生态约束
  • 批准号:
    2337107
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Euler Systems, Iwasawa Theory, and the Arithmetic of Elliptic Curves
欧拉系统、岩泽理论和椭圆曲线算术
  • 批准号:
    2401321
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
CAREER: Accelerating Algorithms for Computing Isogenies and Endomorphisms of Supersingular Elliptic Curves
职业:加速计算超奇异椭圆曲线同构和自同态的算法
  • 批准号:
    2340564
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Combinatorics of Complex Curves and Surfaces
复杂曲线和曲面的组合
  • 批准号:
    2401104
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Super Quantum Curves and Super Voros Coefficients
超级量子曲线和超级 Voros 系数
  • 批准号:
    22KJ0715
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
Random curves and surfaces with conformal symmetries
具有共形对称性的随机曲线和曲面
  • 批准号:
    2246820
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
The embedded topology of projective plane curves and the generalization of splitting invariants
射影平面曲线的嵌入拓扑和分裂不变量的推广
  • 批准号:
    23K03042
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on supersingular curves and their moduli spaces via computational algebraic geometry and its applications to cryptography
基于计算代数几何的超奇异曲线及其模空间研究及其在密码学中的应用
  • 批准号:
    23K12949
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Diversified study on Manin's conjecture for rational points/rational curves/motives
马宁有理点/有理曲线/动机猜想的多元化研究
  • 批准号:
    23H01067
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Conference: 1, 2, 3: Curves, Surfaces, and 3-Manifolds
会议:1,2,3:曲线、曲面和 3-流形
  • 批准号:
    2246832
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了