Constant Mean Curvature Surfaces and Smoke Ring Flow
恒定平均曲率表面和烟环流
基本信息
- 批准号:179877155
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2010
- 资助国家:德国
- 起止时间:2009-12-31 至 2012-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Differential Geometry research group at the Department of Mathematics at TU Berlin has been very successful in applying ideas from Differential Geometry to Computer Graphics and using visualization to carry out experiments in Differential Geometry. This led to the development of a new research field in mathematics called Discrete Differential Geometry. Since more than two decades the Differential Geometry research group is having a very successful cooperation with colleagues in particular from China. The aim of this project is to extend this cooperation to the interplay of Discrete Differential Geometry and Computer Graphics. The proposed project consists of three strongly related parts. The first part concerns the extension of our cooperation with leading Differential Geometers in China into the new field of Discrete Differential Geometry and Visualization. The second and central part is a research project on the relation of the theory of surfaces of constant mean curvature and the smoke ring flow of space curves. This concrete research project relies on the interplay of Differential Geometry and Visualization, thus it implements the ideas sketched above and provides a research anchor for other activities within this project. In the third part we want to continue our existing cooperation with leading Differential Geometers in China concerning Geometric Modelling Procedures, Submanifolds and Weyl Geometries.
微分几何研究小组在数学系在TU柏林已经非常成功地应用思想从微分几何计算机图形和使用可视化进行实验微分几何。这导致了一个新的数学研究领域的发展,称为离散微分几何。二十多年来,微分几何研究小组与中国的同事进行了非常成功的合作。这个项目的目的是将这种合作扩展到离散微分几何和计算机图形学的相互作用。拟议的项目包括三个密切相关的部分。第一部分是关于我们与中国领先的微分几何师合作的扩展,进入离散微分几何和可视化的新领域。第二部分是研究常平均曲率曲面理论与空间曲线烟圈流的关系。这个具体的研究项目依赖于微分几何和可视化的相互作用,因此它实现了上面概述的想法,并为该项目中的其他活动提供了研究锚。在第三部分中,我们希望继续我们与中国领先的微分几何师在几何建模过程,子流形和Weyl几何方面的合作。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Ulrich Pinkall其他文献
Professor Dr. Ulrich Pinkall的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Ulrich Pinkall', 18)}}的其他基金
Spectral curves of polygons and triangulated tori
多边形和三角环面的光谱曲线
- 批准号:
5443959 - 财政年份:2005
- 资助金额:
-- - 项目类别:
Research Units
相似国自然基金
Graphon mean field games with partial observation and application to failure detection in distributed systems
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
相似海外基金
Construction of constant mean curvature surfaces via loop groups and Lorentz geometry
通过环群和洛伦兹几何构造恒定平均曲率曲面
- 批准号:
23K03081 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Morse index, topology and geometry of branched constant mean curvature surfaces.
分支常平均曲率表面的莫尔斯指数、拓扑和几何。
- 批准号:
2758306 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Studentship
Embedded constant mean curvature hypersurfaces
嵌入式常平均曲率超曲面
- 批准号:
2417013 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Studentship
Minimal and constant mean curvature surfaces: their geometric and topological properties.
最小和恒定平均曲率曲面:它们的几何和拓扑特性。
- 批准号:
EP/M024512/1 - 财政年份:2015
- 资助金额:
-- - 项目类别:
Research Grant
Constant mean curvature surfaces of higher genus
高维常数平均曲率曲面
- 批准号:
251913428 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Research Grants
Study on hypersurfaces of constant anisotropic mean curvature with singulalities
具有奇点的常各向异性平均曲率超曲面研究
- 批准号:
26610016 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
A new development of constant mean curvature surfaces
常平均曲率曲面的新发展
- 批准号:
25400062 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Research in the Geometry of Minimal and Constant Mean Curvature Surfaces
最小且恒定平均曲率曲面的几何研究
- 批准号:
1309236 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Standard Grant
The geometry of a surface embedded in a 3-manifold with constant mean curvature
嵌入具有恒定平均曲率的 3 流形中的表面的几何形状
- 批准号:
EP/L003163/1 - 财政年份:2013
- 资助金额:
-- - 项目类别:
Research Grant
The shape of nonzero constant mean curvature surfaces embedded in Euclidean space.
嵌入欧几里得空间中的非零恒定平均曲率曲面的形状。
- 批准号:
EP/I01294X/1 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Research Grant