Symplectic solvmanifolds and their friends
辛求解流形及其朋友
基本信息
- 批准号:DE150101647
- 负责人:
- 金额:$ 22.16万
- 依托单位:
- 依托单位国家:澳大利亚
- 项目类别:Discovery Early Career Researcher Award
- 财政年份:2015
- 资助国家:澳大利亚
- 起止时间:2015-01-01 至 2018-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Symplectic geometry is the mathematical foundation of classical mechanics and quantum theory. The symmetry group of a physical system determines the conservation laws governing its behaviour. This project aims to advance the understanding of a large class of these symmetry groups and their associated symplectic geometries, which are called symplectic solvmanifolds. The project aims to: determine the topological properties of symplectic solvmanifolds as encoded in their fundamental groups; their geometric properties in the form of holonomy groups; and the algebraic properties of their symplectic algebras. The project endeavours to classify the building blocks of symplectic geometry.
辛几何是经典力学和量子理论的数学基础。物理系统的对称群决定了支配其行为的守恒定律。这个项目的目的是促进了解一大类这些对称群及其相关的辛几何,这是所谓的辛solvmanifold。该项目旨在:确定编码在其基本群的辛解流形的拓扑性质;其几何性质的形式holonomy群;和其辛代数的代数性质。该项目致力于对辛几何的构建块进行分类。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dr Wolfgang Globke其他文献
Dr Wolfgang Globke的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Non-Vaisman LCK structures on solvmanifolds
求解流形上的非 Vaisman LCK 结构
- 批准号:
20K03622 - 财政年份:2020
- 资助金额:
$ 22.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Complex structures and non-Kaehler structures on compact solvmanifolds
紧凑求解流形上的复杂结构和非凯勒结构
- 批准号:
20K03586 - 财政年份:2020
- 资助金额:
$ 22.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Locally conformal Kahler structure on solvmanifolds
求解流形上的局部共形卡勒结构
- 批准号:
17K05235 - 财政年份:2017
- 资助金额:
$ 22.16万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Deformation theory of complex structures on solvmanifolds
求解流形上复杂结构的变形理论
- 批准号:
25887019 - 财政年份:2013
- 资助金额:
$ 22.16万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Symmetry in Solvmanifolds and Geometric Evolutions
求解流形和几何演化中的对称性
- 批准号:
1105647 - 财政年份:2011
- 资助金额:
$ 22.16万 - 项目类别:
Standard Grant
Regional Conference on Classical Analysis and the Function Theory of Solvmanifolds, Cleveland, Ohio, During May 1977
经典分析和求解流形函数理论区域会议,俄亥俄州克利夫兰,1977 年 5 月
- 批准号:
7702266 - 财政年份:1977
- 资助金额:
$ 22.16万 - 项目类别:
Standard Grant
Theory of Solvable Groups and Solvmanifolds
可解群和可解流形理论
- 批准号:
7608491 - 财政年份:1976
- 资助金额:
$ 22.16万 - 项目类别:
Continuing Grant