Symmetry in Solvmanifolds and Geometric Evolutions

求解流形和几何演化中的对称性

基本信息

  • 批准号:
    1105647
  • 负责人:
  • 金额:
    $ 10.6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2011
  • 资助国家:
    美国
  • 起止时间:
    2011-08-15 至 2015-07-31
  • 项目状态:
    已结题

项目摘要

In this project, the principal investigator proposes to develop a deeper understanding of isometry groups of homogeneous spaces by evolving Riemannian and Lie structures to look for highly symmetric Riemannian metrics on a given homogeneous space. The hybrid techniques used lie at the intersection of Riemannian geometry and Geometric Invariant Theory and are motivated by geometric evolutions like the Ricci flow. In the presence of a transitive nilpotent group of isometries, the proposed techniques have been successfully employed by the principal investigator to show that Ricci soliton metrics on nilmanifolds have maximal isometry groups. The principal investigator proposes to develop this approach in the more general setting that the transitive group of isometries is solvable to achieve similar results for Einstein and Ricci soliton metrics on solvmanifolds. Similar questions on compact nilmanifolds will also be addressed. As several of the proprosed problems can naturally be rephrased in the language of Geometric Invariant Theory, this avenue will be explored as well.This project is devoted to the fundamental problem in geometry of finding a best shape for a given object. The objects of interest are homogeneous spaces, which are spaces having the property that every point looks the same as every other point. These spaces serve as basic examples across many branches of mathematics and have been a source of inspiration in modern geometry for over a century. Although homogeneous spaces have been tirelessly explored, there are still many fundamental questions that have not been resolved. The principal investigator will address this question of finding preferred metrics, aiming to show that Einstein and Ricci solitons metrics are the most symmetric choice of geometry on a fixed homogeneous space, when they exist.The PI will continue his work, supervising undergraduate research and attracting graduate students for area of research. The project has the potential to provide attractive and challenging opportunities for the undergraduate and graduate students of his university through the study of the Ricci flow on solvable Lie groups. The PI will continue his work, supervising undergraduate research and attracting graduate students for his area of research. The project has the potential to provide attractive and challenging opportunities for the undergraduate and graduate students of his university through the study of the Ricci flow on solvable Lie groups.
在这个项目中,主要研究者提出通过发展黎曼和李结构来更深入地理解齐性空间的等距群,以寻找给定齐性空间上的高度对称黎曼度量。 所使用的混合技术位于黎曼几何和几何不变理论的交叉点,并受到像Ricci流这样的几何演化的激励。 在存在可迁幂零等距群的情况下,主要研究者成功地利用所提出的方法证明了幂零流形上的Ricci孤子度量具有极大等距群. 主要研究者提出,发展这种方法在更一般的设置,传递组的等距是可解的,以实现类似的结果,爱因斯坦和里奇孤子度量的solvmanifold。 紧nilmanifold类似的问题也将得到解决。 由于几个proprosed问题可以很自然地在语言中的几何不变理论,这条途径也将探讨。这个项目是致力于在几何的基本问题,找到一个最佳形状为给定的对象。 感兴趣的对象是齐次空间,这些空间具有每个点看起来与其他每个点相同的属性。 这些空间作为数学许多分支的基本例子,并且在世纪以来一直是现代几何的灵感来源。 虽然均匀空间已经被不知疲倦地探索,但仍然有许多基本问题没有解决。 首席研究员将解决这个问题,找到首选的度量,旨在表明爱因斯坦和里奇孤子度量是最对称的选择几何上一个固定的齐次空间,当他们存在。PI将继续他的工作,监督本科生的研究,并吸引研究生的研究领域。该项目有可能通过研究可解李群上的Ricci流,为他所在大学的本科生和研究生提供有吸引力和具有挑战性的机会。PI将继续他的工作,监督本科生的研究,并吸引研究生为他的研究领域。该项目有可能通过研究可解李群上的Ricci流,为他所在大学的本科生和研究生提供有吸引力和具有挑战性的机会。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Jablonski其他文献

Poster Number: NR 31 - Combinatorial Pharmacogenomics Reduces Polypharmacy and Medication Cost in Elderly Patients with Anxiety and Depression
  • DOI:
    10.1016/j.jagp.2017.01.165
  • 发表时间:
    2017-03-01
  • 期刊:
  • 影响因子:
  • 作者:
    Mark Mayhew;Michael Jablonski;Jim Li;Bryan Dechairo
  • 通讯作者:
    Bryan Dechairo
Moduli of Einstein and non-Einstein nilradicals
  • DOI:
    10.1007/s10711-010-9546-z
  • 发表时间:
    2010-11-17
  • 期刊:
  • 影响因子:
    0.500
  • 作者:
    Michael Jablonski
  • 通讯作者:
    Michael Jablonski

Michael Jablonski的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Jablonski', 18)}}的其他基金

Homogeneous Einstein Spaces
齐次爱因斯坦空间
  • 批准号:
    1906351
  • 财政年份:
    2019
  • 资助金额:
    $ 10.6万
  • 项目类别:
    Standard Grant
Symmetry and Geometry on the Southern Great Plains Conference
南部大平原会议的对称与几何
  • 批准号:
    1856652
  • 财政年份:
    2019
  • 资助金额:
    $ 10.6万
  • 项目类别:
    Standard Grant
Participant Support for the Workshop on Differential Geometry
微分几何研讨会的参与者支持
  • 批准号:
    1632786
  • 财政年份:
    2016
  • 资助金额:
    $ 10.6万
  • 项目类别:
    Standard Grant
CURVATURE, SYMMETRY, AND STABILITY IN HOMOGENEOUS SPACES
均匀空间中的曲率、对称性和稳定性
  • 批准号:
    1612357
  • 财政年份:
    2016
  • 资助金额:
    $ 10.6万
  • 项目类别:
    Standard Grant
Group Actions in Riemannian Geometry
黎曼几何中的群作用
  • 批准号:
    1361100
  • 财政年份:
    2014
  • 资助金额:
    $ 10.6万
  • 项目类别:
    Standard Grant
A Noncontact Water Stage Measuring Instrument
非接触式水位测量仪
  • 批准号:
    8761134
  • 财政年份:
    1988
  • 资助金额:
    $ 10.6万
  • 项目类别:
    Standard Grant

相似海外基金

Non-Vaisman LCK structures on solvmanifolds
求解流形上的非 Vaisman LCK 结构
  • 批准号:
    20K03622
  • 财政年份:
    2020
  • 资助金额:
    $ 10.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Complex structures and non-Kaehler structures on compact solvmanifolds
紧凑求解流形上的复杂结构和非凯勒结构
  • 批准号:
    20K03586
  • 财政年份:
    2020
  • 资助金额:
    $ 10.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Locally conformal Kahler structure on solvmanifolds
求解流形上的局部共形卡勒结构
  • 批准号:
    17K05235
  • 财政年份:
    2017
  • 资助金额:
    $ 10.6万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Symplectic solvmanifolds and their friends
辛求解流形及其朋友
  • 批准号:
    DE150101647
  • 财政年份:
    2015
  • 资助金额:
    $ 10.6万
  • 项目类别:
    Discovery Early Career Researcher Award
Deformation theory of complex structures on solvmanifolds
求解流形上复杂结构的变形理论
  • 批准号:
    25887019
  • 财政年份:
    2013
  • 资助金额:
    $ 10.6万
  • 项目类别:
    Grant-in-Aid for Research Activity Start-up
Regional Conference on Classical Analysis and the Function Theory of Solvmanifolds, Cleveland, Ohio, During May 1977
经典分析和求解流形函数理论区域会议,俄亥俄州克利夫兰,1977 年 5 月
  • 批准号:
    7702266
  • 财政年份:
    1977
  • 资助金额:
    $ 10.6万
  • 项目类别:
    Standard Grant
Theory of Solvable Groups and Solvmanifolds
可解群和可解流形理论
  • 批准号:
    7608491
  • 财政年份:
    1976
  • 资助金额:
    $ 10.6万
  • 项目类别:
    Continuing Grant
ANALYSIS ON SOLVMANIFOLDS
溶剂歧管分析
  • 批准号:
    7462761
  • 财政年份:
    1974
  • 资助金额:
    $ 10.6万
  • 项目类别:
Analysis on Solvmanifolds
求解流形分析
  • 批准号:
    7308601
  • 财政年份:
    1973
  • 资助金额:
    $ 10.6万
  • 项目类别:
    Standard Grant
ANALYSIS ON SOLVMANIFOLDS
溶剂歧管分析
  • 批准号:
    7353864
  • 财政年份:
    1973
  • 资助金额:
    $ 10.6万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了