A regularized concrete model for high strain rates with a FAIR parameter estimation framework

具有 FAIR 参数估计框架的高应变率正则化混凝土模型

基本信息

项目摘要

The investigation of concrete behavior under blast loads is of utmost importance for industries and government agencies handling high explosives or seeking protection against intentional blast events. While field experiments offer insights, they are resource-intensive. Therefore, numerical simulations provide a cost-effective alternative with adjustable parameters. For the simulation of the complex behavior of concrete under high strain rates, several local models exist that consider different phenomena (nonlinear equation of state with history variable for pore-crushing, strain-rate-dependency, hardening, softening, pressure-dependent yield surfaces, residual strength in compressive states, etc.). This complexity also results in a large parameter space, making model calibration a non-trivial task. In recent years, gradient-enhancement for explicit simulations has been introduced. However, these models only partly cover the complexity of the failure mechanisms observed in reality. Therefore, a regularized extension of the RHT model is proposed that simulates the complex material behavior while being mesh-independent. This includes a gradient-enhancement with an inertia term to model the strength increase of the concrete in high strain rates. Additionally, a viscosity term is introduced to account for low strain rates. In contrast to a description of the strain-rate dependent strength using phenomenological approaches in state-of-the art models, the new model is based on physical assumptions. The gradient enhancement is further combined with a decreasing length parameter, mitigating a spurious expansion of the damage zone. Integrating gradient enhancement introduces additional parameters to an already complex model complicating the parameter determination even further. To leverage prior research, a database of experimental data with corresponding metadata schema is developed and shared with the research community according to the FAIR principles. Due to the regularization, constitutive parameters are mesh-independent material parameters which are determined using Bayesian inference. In practical applications, acquiring the complete parameter set from limited data without conducting experiments is desirable. Hence, the parameter space is explored using machine learning and dimensionality reduction techniques to identify possible relationships among the parameters and the concrete mix composition. This approach enables the determination of reliable approximations for arbitrary concrete mixtures. In order to ensure the reproducibility of the entire methodology, including the data, the simulation models and the determination of the material parameters, all software components are developed as open source and linked using automation tools. The aim is to develop a methodology that makes it possible to use complex numerical models with quality assurance for industrial applications.
爆炸荷载下混凝土性能的研究对于处理烈性炸药或寻求保护以防止故意爆炸事件的工业和政府机构至关重要。虽然实地实验提供了见解,但它们是资源密集型的。因此,数值模拟提供了一种具有可调参数的成本效益的替代方案。对于高应变率下混凝土的复杂行为的模拟,存在几个考虑不同现象的局部模型(具有孔隙破碎、应变率依赖性、硬化、软化、压力依赖性屈服面、压缩状态下的剩余强度等历史变量的非线性状态方程)。这种复杂性还导致了较大的参数空间,使得模型校准成为一项重要的任务。近年来,梯度增强显式模拟已被引入。然而,这些模型仅部分涵盖了在现实中观察到的故障机制的复杂性。因此,RHT模型的正则化扩展,提出了模拟复杂的材料行为,同时是网格独立的。这包括一个梯度增强与惯性项,以模拟在高应变率的混凝土的强度增加。此外,粘度项被引入到低应变率。与现有模型中使用唯象方法描述应变率相关强度不同,新模型基于物理假设。梯度增强进一步与减小的长度参数相结合,从而减轻损伤区的虚假扩张。集成梯度增强向已经复杂的模型引入额外的参数,使得参数确定更加复杂。为了利用先前的研究,开发了一个具有相应元数据模式的实验数据数据库,并根据FAIR原则与研究社区共享。由于正则化,本构参数是使用贝叶斯推断确定的与网格无关的材料参数。在实际应用中,需要从有限的数据中获取完整的参数集而无需进行实验。因此,参数空间探索使用机器学习和降维技术,以确定参数和混凝土配合比组成之间可能的关系。这种方法可以确定可靠的近似任意混凝土混合物。为了确保整个方法的可重复性,包括数据、模拟模型和材料参数的确定,所有软件组件都是开源的,并使用自动化工具进行链接。其目的是开发一种方法,使其能够使用复杂的数值模型与工业应用的质量保证。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr.-Ing. Jörg F. Unger其他文献

Dr.-Ing. Jörg F. Unger的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dr.-Ing. Jörg F. Unger', 18)}}的其他基金

An adaptive hyperreduced domain decomposition approach for nonlinear heterogeneous structures
非线性异质结构的自适应超简化域分解方法
  • 批准号:
    394350870
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Numerical and experimental investigations for the modeling of the time-dependent deformation characteristics of concrete on the mesoscale with coupled models for mechanical and hygric effects
利用机械和湿度效应耦合模型对介观尺度上的混凝土随时间变形特性进行建模的数值和实验研究
  • 批准号:
    252766671
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Homogenisierung und Multiskalensimulationen von Lokalisierungsphänomenen
定位现象的均质化和多尺度模拟
  • 批准号:
    166630204
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Fellowships
CISM-Kurs "Advances of Soft Computing in Engineering" (08.-12.10.2007 in Udine/Italien)
CISM 课程“工程软计算的进展”(2007 年 10 月 8 日至 12 日,意大利乌迪内)
  • 批准号:
    61499023
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Research Grants
CISM-Kurs "Multiscale Modelling of Damage and Fracture Processes in Composite Materials"
CISM 课程“复合材料损伤和断裂过程的多尺度建模”
  • 批准号:
    5436290
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Data driven model adaptation for identifying stochastic digital twins of bridges
用于识别桥梁随机数字孪生的数据驱动模型适应
  • 批准号:
    501811638
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Priority Programmes

相似国自然基金

高性能纤维混凝土构件抗爆的强度预测
  • 批准号:
    51708391
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
静动态损伤问题的基面力元法及其在再生混凝土材料细观损伤分析中的应用
  • 批准号:
    11172015
  • 批准年份:
    2011
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目

相似海外基金

Construction of future deterioration prediction model for corroded reinforced concrete and its verification with existing members
腐蚀钢筋混凝土未来劣化预测模型的构建及其与现有构件的验证
  • 批准号:
    23H01485
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Integrating SHM and NDE data into a digital twin model (DTM) for aging Reinforced Concrete reservoirs
将 SHM 和 NDE 数据集成到老化钢筋混凝土水库的数字孪生模型 (DTM) 中
  • 批准号:
    566329-2021
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Alliance Grants
Multiscale Constitutive Model Development for Deteriorating Concrete
劣化混凝土的多尺度本构模型开发
  • 批准号:
    RGPIN-2022-04668
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
A multi-scale approach for modeling self-healing concrete by coupling water ingress and crack healing process
通过耦合进水和裂缝愈合过程来模拟自修复混凝土的多尺度方法
  • 批准号:
    22K04257
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Integrating SHM and NDE data into a digital twin model (DTM) for aging Reinforced Concrete reservoirs
将 SHM 和 NDE 数据集成到老化钢筋混凝土水库的数字孪生模型 (DTM) 中
  • 批准号:
    566329-2021
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Alliance Grants
Seismic Performance Evaluation Based on Mechanical Model for Reinforced Concrete Beam-Column Joint Suffering Axial Collapse after Joint-hinging Failure
基于力学模型的钢筋混凝土梁柱节点铰接破坏后轴倒塌抗震性能评价
  • 批准号:
    21K04338
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Development of constitutive model for creep and shrinkage behavior of concrete in steel-concrete hybrid structure
钢-混凝土混合结构混凝土徐变收缩行为本构模型的建立
  • 批准号:
    20K04662
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A concrete hammer-sounding-test system based on the secondary auditory cortex model
基于次级听觉皮层模型的混凝土锤击测试系统
  • 批准号:
    20K21016
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
A hybrid analytical model for timber-concrete composite structures
木-混凝土组合结构的混合分析模型
  • 批准号:
    551783-2020
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    University Undergraduate Student Research Awards
Mass transfer prediction model in unsaturated concrete based on electrochemical physical properties
基于电化学物理性质的非饱和混凝土传质预测模型
  • 批准号:
    19K04545
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了