Data driven model adaptation for identifying stochastic digital twins of bridges

用于识别桥梁随机数字孪生的数据驱动模型适应

基本信息

  • 批准号:
    501811638
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    德国
  • 项目类别:
    Priority Programmes
  • 财政年份:
  • 资助国家:
    德国
  • 起止时间:
  • 项目状态:
    未结题

项目摘要

The goal of the proposal is the development of methods to support the creation of digital twins of bridges based on simulation models. In particular, this should include an estimate of the quality of prognosis of simulation results. This estimate is obtained via Bayes inference procedures using both laboratory as well as monitoring data. A particular challenge in the development of a simulation model for bridges is that in many cases the modelling assumptions from the design differ from the real implementation. For this reason, an adaptive process is necessary in which additional physical effects are added or changed (boundary conditions, geometry of the reinforcement layers, constitutive laws) until the digital and the real twin have identical properties within prescribed tolerances. However, the comparison between measured data and simulation results cannot be done manually, on the one hand due to the high dimension of the data space (large number and different types of sensors), on the other hand also due to the large amount of data resulting from monitoring. Furthermore, due to the ellipticity of the underlying differential equations, local changes at one point in the model lead to changes of the global behavior, i.e. the localization of model bias only from the data is often not possible. Therefore, the goal of the project is to develop a semi-automatic approach. Based on an initial, physically motivated model, the parameters of the model are calibrated using the data. In addition, a possible model improvement is identified from the data. Different approaches based on Gaussian processes, random fields for material parameters or a sparse dictionary learning approaches will be compared. Based on this data-driven model bias, the modeler shall develop a physically motivated model improvement (possibly with additional parameters) until the simulation model is sufficiently accurate. A large number of calculations of the forward model (FE model of the bridge) is required to calibrate the model parameters. In order to improve the performance of the methodology, the forward models are replaced by metamodels. In particular, Gaussian processes and Bayesian physics-informed neural networks are used for this purpose. The methodology will be validated within the project on different examples with varying degrees of complexity, starting with virtual data with simple beam models (including faults), existing bridge demonstrators on our test site and, finally, with real data from the demonstrator in the SPP. Parallel to the implementation of the methodology, a continuous development of the interfaces to the other projects in the SPP and an integration into a common platform is intended.
该提案的目标是开发方法,以支持基于仿真模型的桥梁数字双胞胎的创建。特别是,这应该包括对模拟结果预测质量的估计。这一估计是通过使用实验室和监测数据的贝叶斯推理程序获得的。开发桥梁模拟模型的一个特殊挑战是,在许多情况下,设计中的建模假设与实际实现不同。出于这个原因,需要一个自适应过程,在这个过程中添加或改变额外的物理效应(边界条件、增强层的几何形状、本构定律),直到数字孪生体和真实孪生体在规定的公差范围内具有相同的性能。然而,由于数据空间的高维(传感器数量多、种类多),以及由于监测产生的数据量大,测量数据与仿真结果的比较无法手工完成。此外,由于底层微分方程的椭圆性,模型中某一点的局部变化会导致全局行为的变化,即仅从数据中定位模型偏差往往是不可能的。因此,该项目的目标是开发一种半自动方法。基于初始的、物理驱动的模型,使用数据校准模型的参数。此外,从数据中确定了可能的模型改进。将比较基于高斯过程、材料参数随机场或稀疏字典学习方法的不同方法。基于这种数据驱动的模型偏差,建模者应开发物理驱动的模型改进(可能使用额外的参数),直到仿真模型足够准确。为了校正模型参数,需要进行大量的正演模型(桥梁有限元模型)计算。为了提高方法的性能,将前向模型替换为元模型。特别地,高斯过程和贝叶斯物理信息神经网络被用于此目的。该方法将在项目中对不同复杂程度的不同示例进行验证,从简单梁模型(包括故障)的虚拟数据开始,从我们测试现场的现有桥梁演示器开始,最后是SPP中演示器的真实数据。在实施该方法的同时,SPP中其他项目的接口将不断开发,并集成到一个公共平台中。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dr.-Ing. Jörg F. Unger其他文献

Dr.-Ing. Jörg F. Unger的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dr.-Ing. Jörg F. Unger', 18)}}的其他基金

An adaptive hyperreduced domain decomposition approach for nonlinear heterogeneous structures
非线性异质结构的自适应超简化域分解方法
  • 批准号:
    394350870
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Numerical and experimental investigations for the modeling of the time-dependent deformation characteristics of concrete on the mesoscale with coupled models for mechanical and hygric effects
利用机械和湿度效应耦合模型对介观尺度上的混凝土随时间变形特性进行建模的数值和实验研究
  • 批准号:
    252766671
  • 财政年份:
    2014
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Homogenisierung und Multiskalensimulationen von Lokalisierungsphänomenen
定位现象的均质化和多尺度模拟
  • 批准号:
    166630204
  • 财政年份:
    2010
  • 资助金额:
    --
  • 项目类别:
    Research Fellowships
CISM-Kurs "Advances of Soft Computing in Engineering" (08.-12.10.2007 in Udine/Italien)
CISM 课程“工程软计算的进展”(2007 年 10 月 8 日至 12 日,意大利乌迪内)
  • 批准号:
    61499023
  • 财政年份:
    2007
  • 资助金额:
    --
  • 项目类别:
    Research Grants
CISM-Kurs "Multiscale Modelling of Damage and Fracture Processes in Composite Materials"
CISM 课程“复合材料损伤和断裂过程的多尺度建模”
  • 批准号:
    5436290
  • 财政年份:
    2004
  • 资助金额:
    --
  • 项目类别:
    Research Grants
A regularized concrete model for high strain rates with a FAIR parameter estimation framework
具有 FAIR 参数估计框架的高应变率正则化混凝土模型
  • 批准号:
    544609570
  • 财政年份:
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

Data-driven Recommendation System Construction of an Online Medical Platform Based on the Fusion of Information
  • 批准号:
  • 批准年份:
    2024
  • 资助金额:
    万元
  • 项目类别:
    外国青年学者研究基金项目
基于Cache的远程计时攻击研究
  • 批准号:
    60772082
  • 批准年份:
    2007
  • 资助金额:
    28.0 万元
  • 项目类别:
    面上项目

相似海外基金

A data-driven modeling approach for augmenting climate model simulations and its application to Pacific-Atlantic interbasin interactions
增强气候模型模拟的数据驱动建模方法及其在太平洋-大西洋跨流域相互作用中的应用
  • 批准号:
    23K25946
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
A data-driven modeling approach for augmenting climate model simulations and its application to Pacific-Atlantic interbasin interactions
增强气候模型模拟的数据驱动建模方法及其在太平洋-大西洋跨流域相互作用中的应用
  • 批准号:
    23H01250
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Data-driven model links BMIz to gene expression in pediatric asthma
数据驱动模型将 BMIz 与小儿哮喘基因表达联系起来
  • 批准号:
    493135
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Accurate and Individualized Prediction of Excitation-Inhibition Imbalance in Alzheimer's Disease using Data-driven Neural Model
使用数据驱动的神经模型准确、个性化地预测阿尔茨海默病的兴奋抑制失衡
  • 批准号:
    10727356
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Dissociating respiratory depression and analgesia via a data-driven model of interacting respiratory and pain networks
通过呼吸和疼痛网络相互作用的数据驱动模型分离呼吸抑制和镇痛
  • 批准号:
    10644300
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Data-driven and science-informed methods for the discovery of biomedical mechanisms and processes
用于发现生物医学机制和过程的数据驱动和科学信息方法
  • 批准号:
    10624014
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Elucidating the Role of Endothelial Dysfunction in Alzheimer Disease: Towards A New Data-Driven Disease Model
阐明内皮功能障碍在阿尔茨海默病中的作用:建立新的数据驱动疾病模型
  • 批准号:
    10737969
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Thermal noise reduction in next-generation cryogenic gravitational wave telescopes through nonlinear physical model fusion data-driven methods
通过非线性物理模型融合数据驱动方法降低下一代低温引力波望远镜的热噪声
  • 批准号:
    23K03437
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Integrating Musculoskeletal and Data-Driven Modeling to Understand the Biomechanical Sequelae of Syndesmotic Repair
整合肌肉骨骼和数据驱动建模以了解韧带联合修复的生物力学后遗症
  • 批准号:
    10751099
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Improving data-driven design using physical model-based machine learning
使用基于物理模型的机器学习改进数据驱动设计
  • 批准号:
    23K13239
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了