擬馴分岐ガロア拡大の岩澤理論と相互法則

岩泽理论与拟熟悉分岔伽罗瓦展开的互易律

基本信息

  • 批准号:
    22K03268
  • 负责人:
  • 金额:
    $ 1.08万
  • 依托单位:
  • 依托单位国家:
    日本
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
  • 财政年份:
    2022
  • 资助国家:
    日本
  • 起止时间:
    2022-04-01 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

当研究課題の目的は、代数体の擬馴分岐副pガロア群の構造と種々の数論的不変量との関係性を精密に記述し、岩澤理論の未解決問題および相互法則の研究に応用することである。特にこの初年度の目標は、その関係性の明示的な記述と応用のための準備であった。そのために必要な群論的手法の調査と整理、および具体例の計算の準備を行い、研究計画の一部として以下を達成している。まず、小さな擬馴分岐副pガロア群の存在性について新しい知見を得た。有限p群の交換子群に関する定理を、古典的なものから発展的なものまで応用し、擬馴分岐副pガロア群の交換子群が小さな有限p群となる十分条件を与えた。この研究成果は、国内の研究セミナーにおいて発表した。次に、擬馴分岐副pガロア群の特別な場合である2上円分的分岐副2ガロア群の分岐条件を拡張し、岩澤加群の具体的計算への応用の準備を進めた。この拡張した分岐条件付き副2ガロア群の構造定理が得られれば、具体的計算の応用範囲も大きく拡張されることになる。さらに、岩澤理論の未解決問題(グリーンバーグ予想など)への擬馴分岐副pガロア群の応用について、数論トポロジーの視点から再考察した。特に、グリーンバーグ予想が肯定的となる十分条件を与えている古典的な定理に対して、その別証明を整理した。その考察と整理の過程で、枝分かれしていた幾つかのグリーンバーグ予想研究の方向性を統一する見方が得られた。この研究内容は、国外の国際研究集会にて発表した。
The purpose of this research is to describe accurately the structure of quasi-bifurcation groups of algebras, the relationship between number theory and unsolved problems of Iwasawa theory, and the study of mutual laws. The purpose of the first year of the year is to express the purpose of the year. The investigation and arrangement of the necessary methods of group theory, the preparation of specific examples, and the completion of part of the research plan The existence of the divided sub-group of people has been achieved through new knowledge and insights. The theorem for finite p groups, the classical theorem for finite p groups, and the classical theorem for finite p groups. The results of this research are similar to those of domestic research. In addition, in the special case of quasi-bifurcation, the bifurcation conditions of the bifurcation of the bifurcation The construction theorem of the group is obtained by the expansion of the bifurcation condition, and the specific calculation is carried out by the expansion of the bifurcation condition. In addition, the unsolved problems of Iwasawa theory are re-examined from the viewpoint of quasi-bifurcation, sub-group and number theory. Special conditions and classical theorems are proposed to be proved differently. The process of investigation and arrangement is divided into several parts, and the direction of research is unified. This research content is presented at international research conferences abroad.

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Revisiting Fukuda-Komatsu criterion from arithmetic topology
从算术拓扑重新审视福田-小松准则
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nobuhiro Honda;Nobuhiro Honda and Ayato Minagawa;Nobuhiro Honda;Yasushi Mizusawa
  • 通讯作者:
    Yasushi Mizusawa
代数体のp拡大と小さな有限p群
代数域的 p 展开和小的有限 p 群
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Nobuhiro Honda;Nobuhiro Honda and Ayato Minagawa;Nobuhiro Honda;Yasushi Mizusawa;水澤 靖
  • 通讯作者:
    水澤 靖
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

水澤 靖其他文献

ジューコフスキー変換から生じる代数体の2進Lie反復拡大について
关于 Zhukovsky 变换产生的代数域的二元李迭代展开
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    水澤 靖;山本 康太
  • 通讯作者:
    山本 康太
On the density theorem related to the space of non-split tri-Hermitian forms I
关于不可分裂三厄米形式空间的密度定理Ⅰ
  • DOI:
    10.1016/j.jnt.2018.07.015
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    水澤 靖;山本 康太;Akihiko Yukie
  • 通讯作者:
    Akihiko Yukie
On the maximal unramified pro-2-extension of Z_2-extensions of certain real quadratic fields II
关于某些实二次域Z_2-扩张的最大无枝亲2-扩张II
  • DOI:
  • 发表时间:
    2005
  • 期刊:
  • 影响因子:
    0
  • 作者:
    古澤和也;槇靖幸;山本隆夫;土橋敏明;水澤 靖;水澤 靖;水澤 靖;Yasushi Mizusawa
  • 通讯作者:
    Yasushi Mizusawa
虚2次体の円分Z_2拡大体の最大不分岐pro-2拡大について(II)
论虚二次域圆弧Z_2延拓域的最大无支pro-2延展(二)
円分Z_2拡大上の有限2-類体塔について
关于圆Z_2上的有限2级场塔展开

水澤 靖的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('水澤 靖', 18)}}的其他基金

代数体の類体塔に関する非可換岩澤理論の研究
代数域类域塔非交换岩泽理论研究
  • 批准号:
    05J06898
  • 财政年份:
    2005
  • 资助金额:
    $ 1.08万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
代数体の類体塔に関する非可換岩澤理論の研究
代数域类域塔非交换岩泽理论研究
  • 批准号:
    03J01140
  • 财政年份:
    2003
  • 资助金额:
    $ 1.08万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows

相似海外基金

岩澤理論とオイラー系理論の新展開
岩泽理论和欧拉系统理论的新进展
  • 批准号:
    23K22390
  • 财政年份:
    2024
  • 资助金额:
    $ 1.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Euler Systems, Iwasawa Theory, and the Arithmetic of Elliptic Curves
欧拉系统、岩泽理论和椭圆曲线算术
  • 批准号:
    2401321
  • 财政年份:
    2024
  • 资助金额:
    $ 1.08万
  • 项目类别:
    Continuing Grant
岩澤理論の幾何学的研究
岩泽理论的几何研究
  • 批准号:
    24K06669
  • 财政年份:
    2024
  • 资助金额:
    $ 1.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
変形理論、非可換化の融合による岩澤理論の新展開
变形理论与非交换化融合岩泽理论的新发展
  • 批准号:
    23K25763
  • 财政年份:
    2024
  • 资助金额:
    $ 1.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Iwasawa theory of class group schemes in characteristic p
特征p中的类群方案岩泽理论
  • 批准号:
    2302072
  • 财政年份:
    2023
  • 资助金额:
    $ 1.08万
  • 项目类别:
    Continuing Grant
Iwasawa theory of elliptic curves and the Birch--Swinnerton-Dyer conjecture
岩泽椭圆曲线理论和 Birch--Swinnerton-Dyer 猜想
  • 批准号:
    2302064
  • 财政年份:
    2023
  • 资助金额:
    $ 1.08万
  • 项目类别:
    Standard Grant
変形理論、非可換化の融合による岩澤理論の新展開
变形理论与非交换化融合岩泽理论的新发展
  • 批准号:
    23H01066
  • 财政年份:
    2023
  • 资助金额:
    $ 1.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Iwasawa Theory and p-adic Hodge Theory
岩泽理论和 p-adic Hodge 理论
  • 批准号:
    RGPIN-2019-03987
  • 财政年份:
    2022
  • 资助金额:
    $ 1.08万
  • 项目类别:
    Discovery Grants Program - Individual
岩澤理論とオイラー系理論の新展開
岩泽理论和欧拉系统理论的新进展
  • 批准号:
    22H01119
  • 财政年份:
    2022
  • 资助金额:
    $ 1.08万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Iwasawa Theory, Euler Systems and Arithmetic Applications
岩泽理论、欧拉系统和算术应用
  • 批准号:
    RGPIN-2020-04259
  • 财政年份:
    2022
  • 资助金额:
    $ 1.08万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了