Adsorption von Helium-Mono- und Bilagen auf wohldefinierten Substraten: Bindung, elektronische Eigenschaften und elektronisch induzierte Dynamik
氦单层和双层在明确基底上的吸附:结合、电子特性和电子诱导动力学
基本信息
- 批准号:64960040
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2008
- 资助国家:德国
- 起止时间:2007-12-31 至 2011-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Erstmals sollen in diesem Projekt Heliumschichten auf wohldefinierten Metall- und Isolatorsubstraten präpariert und mit Anregung durch Photonen von Synchrotron- und Laserquellen sowie durch Elektronen spektroskopisch untersucht werden. Matrix- und substratinduzierte Änderungen der elektronischen Eigenschaften des physisorbierten Heliums im Vergleich zum freien Atom sollen durch Messungen von Ein- und Mehrelektronenanregungen mit zweidimensionaler Elektronen-Flugzeitspektroskopie, sowie durch den Nachweis desorbierender Ionen und metastabil angeregter Atome analysiert werden. Ziel ist ein Verständnis wichtiger mikroskopischer Effekte wie der Kopplung ans Substrat, die zu drastisch verkürzten Lebensdauern für neutrale Anregungen führt, sowie der Kopplung zwischen den Heliumatomen der Schichten, deren Signaturen sowohl in der Anregung als auch im Zerfall von Ein- und Mehrelektronenzuständen untersucht werden sollen.
首先,在这个项目中,Helium schichten必须使用金属和隔离器衬底,并通过同步加速器和激光器的光子来实现,然后通过电子光谱韦尔登来实现。通过采用二维电子飞行光谱仪测量电子和微波的能量,可以获得物理吸附的氦原子的电子本征值的矩阵和衬底,也可以通过Nachweis解吸电离和亚稳态原子分析韦尔登获得。Ziel is ein Verständnis wichtiger mikroskopischer Effekte wie der Kopplung ans Substrat,die zu drastisch verkürzten Lebensdauern für neutrale Anregungen führt,sowie der Kopplung zwischen den Heliumatomen der Schichten,deren Signaturen sowohl in der Anregung als auch im Zerfall von Ein- und Mehkronenzuständen untersucht韦韦尔登sollen.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Dr. Peter Feulner其他文献
Professor Dr. Peter Feulner的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Dr. Peter Feulner', 18)}}的其他基金
Elektronisch induzierte Diffusion und Umordnung von Adsorbaten
电子诱导吸附物的扩散和重排
- 批准号:
5262536 - 财政年份:2000
- 资助金额:
-- - 项目类别:
Priority Programmes
相似国自然基金
半有限von Neumann代数中投影集上的Wigner定理
- 批准号:
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
CUL7基因突变导致Von Hippel Lindau蛋白细胞内蓄积增多致3-M综合征软骨细胞分化异常的分子机制研究
- 批准号:82302106
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
非交换Weyl-von Neumann定理及其弱形式在von Neumann代数中的拓展
- 批准号:12271074
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
线性保持方法在量子信息研究中的应用
- 批准号:12001420
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
关于算子代数上非交换Weyl-von Neumann定理的研究
- 批准号:12001437
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
模型空间上截断Toeplitz算子的可约性
- 批准号:12001089
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
有限von Neumann代数的相对顺从性
- 批准号:12001085
- 批准年份:2020
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
关于超有限II_1因子中一类算子的不变子空间和单个元生成问题的研究
- 批准号:11961037
- 批准年份:2019
- 资助金额:29.0 万元
- 项目类别:地区科学基金项目
算子代数中齐性空间的微分几何结构
- 批准号:11901453
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
非交换Orlicz空间的性质及其闭子空间
- 批准号:11901038
- 批准年份:2019
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
循環補助時von Willebrand因子の環境応答評価プラットフォーム創生
创建一个平台,用于评估循环支持期间冯维勒布兰德因子的环境反应
- 批准号:
23K25186 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Entropy and Boundary Methods in von Neumann Algebras
冯诺依曼代数中的熵和边界方法
- 批准号:
2350049 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
ECMOによるvon Willebrand 因子への影響
ECMO对血管性血友病因子的影响
- 批准号:
24K12171 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
Approximation properties in von Neumann algebras
冯·诺依曼代数中的近似性质
- 批准号:
2400040 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Free Information Theory Techniques in von Neumann Algebras
冯诺依曼代数中的自由信息理论技术
- 批准号:
2348633 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
止血タンパク質の発現多様性と止血機能および止血以外の機能に関する基礎研究
止血蛋白表达多样性、止血功能及止血以外功能的基础研究
- 批准号:
23H02681 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Endothelial von Willebrand factor and the tissue-specific regulation of angiogenesis and vascular integrity
内皮血管性血友病因子和血管生成和血管完整性的组织特异性调节
- 批准号:
MR/X021106/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
Multimeric Structural Degradation of vWF in Turbulent Flows
vWF 在湍流中的多聚体结构降解
- 批准号:
10563289 - 财政年份:2023
- 资助金额:
-- - 项目类别: