計量の自己双対性と幾何構造について
论度量自对偶性与几何结构
基本信息
- 批准号:08740079
- 负责人:
- 金额:$ 0.51万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Encouragement of Young Scientists (A)
- 财政年份:1996
- 资助国家:日本
- 起止时间:1996 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
本研究では、4次元多様体上のリーマン計量および符号数(2,2)の擬リーマン計量(以下、(2,2)型計量と呼ぶ)の自己双対性について考察し、他の幾何構造との関連を調べた。まず、超複素構造と両立するリーマン計量の反自己双対性に注意して、(2,2)型計量の場合にも、分裂四元数構造という概念を定義し、自己双対性と関連して次の結果を得た。命題.4次元多様体が積分可能な分裂四元数構造をもつとする。このとき、この分裂四元数構造と両立する(2,2)型計量が存在し、その計量は自己双対である。超複素構造をもつコンパクト複素曲面はBoyerによって分かっている。積分可能な分裂四元数構造についても同様の議論を試みたが、計量の不定値性による困難があり、現在のところ不明である。また、このような構造の特別な場合である(2,2)型超ケーラー構造に関してRicci曲率の平坦性などの基本的性質を調べた。特に、(2,2)型超ケーラー構造をもつコンパクト単連結複素曲面はK3曲面でなければならないことが分かる。逆に、K3曲面が(2,2)型超ケーラー構造をもつかどうかは不明である。(2,2)型超ケーラー構造をもつ空間として平坦な複素トーラスがある。Fernandez-Gotay-Grayは、ケーラーでないシンプレクティック多様体の構成と関連して、ある小平-Thurston曲面上に(2,2)型ケーラー計量を求めた。この(2,2)型ケーラー計量について次のことが分かった。命題.上の(2,2)型超ケーラー計量と両立する分裂四元数構造で(2,2)型超ケーラー構造となるものが存在する。特に、この計量は自己双対かつRicci平坦である。上記から(2,2)型超ケーラー構造を許容しても通常のケーラー構造を許容するとは限らないことが分かった。この例は、平坦な複素トーラス以外でコンパクト(2,2)型超ケーラー構造もつ最初の例と思われる。
In this paper, we investigate the relationship between the geometric structure and its duality in the measurement of the number of symbols (2,2) and the quasi-measurement of the number of symbols (2,2). The definition of the concept of the structure of the quaternion and the relation between the quaternion and the bipolarity of the quaternion are obtained. Proposition. 4-dimensional polyhedron integration possible split quaternion construction The structure of quaternion is divided into two parts: one is the existence of quaternion, the other is the existence of quaternion. Super-prime structure is a complex prime surface. Integral may split quaternion construction, measurement of uncertainty, difficulty, uncertainty, uncertainty. The fundamental properties of Ricci curvature and flatness of (2,2)-type superstructures are discussed. Special,(2,2)-type super-structure is composed of complex prime surfaces and K3 surfaces. Inverse, K3 surface Ga (2,2) type super (2, 2)-type superstructures are spatially flat. Fernandez-Gotay-Gray, This (2,2) type of Proposition. The existence of the above (2,2)-type superlattice structure and the existence of the above (2,2)-type superlattice structure. Special, the measurement is not their own double Note that (2, 2)-type structures are allowed to be separated from each other. This example is the first example of a (2,2)-type structure other than a flat complex.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
鎌田 博行其他文献
Proceedings of ICDG 2014 ``Current Developments in Differential Geometry and its Related Fields''
ICDG 2014 论文集《微分几何及其相关领域的当前发展》
- DOI:
- 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
納谷 信;鎌田 博行 - 通讯作者:
鎌田 博行
Compact scalar-fiat indefinite Kahler surfaces with Hamiltonian S^1-symmetry
具有哈密顿 S^1 对称性的紧标标量不定 Kahler 曲面
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
鎌田 博行 - 通讯作者:
鎌田 博行
鎌田 博行的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('鎌田 博行', 18)}}的其他基金
複素多様体上の(不定値)ケーラー計量の幾何学とその一般化に関する研究
复流形上(不定)Kähler度量的几何及其推广研究
- 批准号:
15740048 - 财政年份:2003
- 资助金额:
$ 0.51万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
複素および超複素多様体上の擬リーマン計量とその共形構造に関する研究
复、超复流形上的伪黎曼度量及其共形结构研究
- 批准号:
13740053 - 财政年份:2001
- 资助金额:
$ 0.51万 - 项目类别:
Grant-in-Aid for Young Scientists (B)
多様体上の幾何構造およびその積分可能性に関する研究
流形上的几何结构及其可积性研究
- 批准号:
09740075 - 财政年份:1997
- 资助金额:
$ 0.51万 - 项目类别:
Grant-in-Aid for Encouragement of Young Scientists (A)














{{item.name}}会员




