Reverberation Modelling for Robust Speech Recognition in Reverberant Environments

用于混响环境中鲁棒语音识别的混响建模

基本信息

项目摘要

For many years, automatic speech recognition (ASR) has been successfully deployed in everyday-life applications. The main restriction so far is the necessity of close-talking microphones in order to achieve acceptable recognition performance for natural human/machine dialogues. There are, however, numerous scenarios, such as "Ambient Assisted Living" and "Smart Homes", where the employment of distant-talking microphones being installed at fixed positions in the environment would be much more convenient in order to allow the user to interact independently of the microphone positions and environmental noise. Since in such scenarios, the speaker is usually several meters away from the microphone, the received signal is impaired by additive noise and reverberation of the desired signal. These effects significantly reduce the ASR performance if no countermeasures are taken. While a remarkable progress has been achieved in robustifying ASR systems to additive noise over the past decades, reverberation still represents a major challenge. The key idea underlying this research project is, hence, to develop a flexible and theoretically well-founded framework for efficiently adapting state-of-the-art ASR systems to changing reverberation conditions. Such an approach has already been investigated during the first part of this research project and should now be further developed. The concept is based on an explicit reverberation model embedded into an ASR system, which aims at estimating the reverberant part of an observed signal from the preceding signal components. The fundamental structure of the reverberation estimator is inspired by the physical nature of reverberation approximated by a mathematical convolution, while the estimates of the model parameters are obtained by exploiting statistical methods of machine learning. During the first three years of this project, significant progress in terms of recognition rates has been achieved along with the development of the concept. In order to further the increase ASR performance for reverberant speech, the second phase of the project focuses on extending the reverberation model to more powerful speech features and probability models for the feature vectors as they are predominantly employed in state-of-the-art ASR systems. In addition, different statistical estimation techniques are to be investigated allowing for a robust inference of the reverberation model parameters based on only few speech signal observations. The combination of the proposed method with an established robustification procedure, the training of ASR systems on reverberant data, shall also be studied. As ASR systems are frequently connected to microphone arrays and signal enhancement algorithms in practical applications, the given approach is finally to be analyzed for synergies with concepts of microphone array signal processing.
多年来,自动语音识别(ASR)已成功部署在日常生活中的应用。到目前为止,主要的限制是近距离说话麦克风的必要性,以实现可接受的识别性能的自然人/机对话。然而,存在许多场景,诸如“环境辅助生活”和“智能家居”,其中安装在环境中的固定位置处的远距离通话麦克风的使用将更加方便,以便允许用户独立于麦克风位置和环境噪声进行交互。由于在这种情况下,扬声器通常距离麦克风几米远,所以接收到的信号被期望信号的加性噪声和混响削弱。如果不采取对策,这些影响会显著降低ASR性能。虽然在过去的几十年里,在增强ASR系统对加性噪声的鲁棒性方面取得了显着的进展,但混响仍然是一个主要的挑战。因此,该研究项目的关键思想是开发一个灵活的、理论上有充分依据的框架,以有效地使最先进的ASR系统适应不断变化的混响条件。在本研究项目的第一部分已经对这种方法进行了研究,现在应该进一步发展。该概念基于嵌入到ASR系统中的显式混响模型,其目的是从先前的信号分量估计观察到的信号的混响部分。混响估计器的基本结构是由数学卷积近似的混响的物理性质启发的,而模型参数的估计是通过利用机器学习的统计方法获得的。在该项目的头三年,随着概念的发展,在识别率方面取得了沿着重大进展。为了进一步提高混响语音的ASR性能,该项目的第二阶段侧重于将混响模型扩展到更强大的语音特征和特征向量的概率模型,因为它们主要用于最先进的ASR系统。此外,不同的统计估计技术进行调查,允许一个强大的混响模型参数的推断的基础上,只有很少的语音信号观测。还应研究所提出的方法与已建立的鲁棒化程序的结合,以及ASR系统在混响数据上的训练。由于ASR系统在实际应用中经常连接到麦克风阵列和信号增强算法,因此最后分析了给定方法与麦克风阵列信号处理概念的协同作用。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Spatial diffuseness features for DNN-based speech recognition in noisy and reverberant environments
A Bayesian view on acoustic model-based techniques for robust speech recognition
基于声学模型的鲁棒语音识别技术的贝叶斯观点
A new uncertainty decoding scheme for DNN-HMM hybrid systems with multichannel speech enhancement
Efficient training of acoustic models for reverberation-robust medium-vocabulary automatic speech recognition
用于混响鲁棒的中等词汇量自动语音识别的声学模型的高效训练
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr.-Ing. Walter Kellermann其他文献

Professor Dr.-Ing. Walter Kellermann的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr.-Ing. Walter Kellermann', 18)}}的其他基金

Acoustic Signal Extraction and Enhancement
声学信号提取和增强
  • 批准号:
    318506776
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Units
Structure-optimizing identification of nonlinear systems using elitist particle filtering
使用精英粒子滤波对非线性系统进行结构优化辨识
  • 批准号:
    285955633
  • 财政年份:
    2016
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Verallgemeinerte adaptive nichtlineare Filter und ihre Anwendung zur Systemidentifikation
广义自适应非线性滤波器及其在系统辨识中的应用
  • 批准号:
    85337641
  • 财政年份:
    2008
  • 资助金额:
    --
  • 项目类别:
    Research Grants
Adaptive nichtlineare Systeme und ihre Anwendung zur Kompensation akustischer und elektrischer Echos in Telekommunikationseinrichtungen
自适应非线性系统及其在电信设备中补偿声学和电学回声的应用
  • 批准号:
    5397951
  • 财政年份:
    2003
  • 资助金额:
    --
  • 项目类别:
    Research Grants

相似国自然基金

Improving modelling of compact binary evolution.
  • 批准号:
    10903001
  • 批准年份:
    2009
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

TrustMRI: Trustworthy and Robust Magnetic Resonance Image Reconstruction with Uncertainty Modelling and Deep Learning
TrustMRI:利用不确定性建模和深度学习进行可靠且鲁棒的磁共振图像重建
  • 批准号:
    EP/X039277/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Modelling and Planning Robust and Efficient Wireless Networks for Outdoor Dense Urban Coverage
为室外密集城市覆盖建模和规划强大而高效的无线网络
  • 批准号:
    RGPIN-2017-06395
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Modelling Covariance Structure Randomly, with Applications in Bootstrapping, Robust Statistics, and Deep Learning
随机建模协方差结构,在引导、稳健统计和深度学习中的应用
  • 批准号:
    2113489
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Robust Real-Time Thermal Modelling of High-Speed Permanent Magnet Synchronous Machine
高速永磁同步电机的鲁棒实时热建模
  • 批准号:
    2436035
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Studentship
Modelling and Planning Robust and Efficient Wireless Networks for Outdoor Dense Urban Coverage
为室外密集城市覆盖建模和规划强大而高效的无线网络
  • 批准号:
    RGPIN-2017-06395
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Modelling and Planning Robust and Efficient Wireless Networks for Outdoor Dense Urban Coverage
为室外密集城市覆盖建模和规划强大而高效的无线网络
  • 批准号:
    RGPIN-2017-06395
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Robust and Adaptable 3D Shell-Type Finite Elements for Modelling Thin Biomechanical Structures
用于薄生物力学结构建模的稳健且适应性强的 3D 壳型有限元
  • 批准号:
    529158-2018
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Mathematical Modelling and Robust Parametric Estimation for Thermal Runaway in Li-ion Batteries
锂离子电池热失控的数学建模和鲁棒参数估计
  • 批准号:
    2122926
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Studentship
Modelling and Planning Robust and Efficient Wireless Networks for Outdoor Dense Urban Coverage
为室外密集城市覆盖建模和规划强大而高效的无线网络
  • 批准号:
    RGPIN-2017-06395
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Robust design and modelling of solar houses: methodology and technologies
太阳能房屋的稳健设计和建模:方法和技术
  • 批准号:
    418608-2013
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了