Sovable Models of Finite Multi-resolution analysis
有限多分辨率分析的可解模型
基本信息
- 批准号:09680362
- 负责人:
- 金额:$ 1.34万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1997
- 资助国家:日本
- 起止时间:1997 至 1999
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Learning models with finite multi-resolution functions, for example, neural networks, gaussian mixtures, and finite wavelets, are often used in pattern recognition, robotic control, and time sequence prediction. However, their mathematical foundation has not been established because they are not linear or not regular models. In this research, we clarified the two aspects of their mathematical properties, (1) function approximation abilities, and (2) statistical estimation effciencies.(1) It is well known that function approximation errors by their models depend on the functional topologies. In this research, we proposed a method to clarify the function approximation errors based on the assumption that the target functions are randomly taken from the function probability measures. Based on this assumption, we proved that the average function approximation errors are determined by the covariance of the coeficients of the functions, or the sparseness of the functions. This result shows a critrion whether the multi-resolution analysis is useful or not.(2) In order to clarify the statistical estimation errors, we have shown that the stochastic complexity of the learning model is determined by the deepest singularities of the model, and we developed an algorithm to calculate the learning efficiency based on the Sato-Bernstein's b-function and Hironaka's resolution of singularities.The problems for the future are to depelop a method to estimate the functional probability measure of the images and sounds and to establish the mathematical foundation of the maximum likelihood method.
Learning models with finite multi-resolution functions, for example, neural networks, gaussian mixtures, and finite wavelets, are often used in pattern recognition, robotic control, and time sequence prediction. However, their mathematical foundation has not been established because they are not linear or not regular models. In this research, we clarified the two aspects of their mathematical properties, (1) function approximation abilities, and (2) statistical estimation effciencies.(1) It is well known that function approximation errors by their models depend on the functional topologies. In this research, we proposed a method to clarify the function approximation errors based on the assumption that the target functions are randomly taken from the function probability measures. Based on this assumption, we proved that the average function approximation errors are determined by the covariance of the coeficients of the functions, or the sparseness of the functions. This result shows a critrion whether the multi-resolution analysis is useful or not.(2) In order to clarify the statistical estimation errors, we have shown that the stochastic complexity of the learning model is determined by the deepest singularities of the model, and we developed an algorithm to calculate the learning efficiency based on the Sato-Bernstein's b-function and Hironaka's resolution of singularities.The problems for the future are to depelop a method to estimate the functional probability measure of the images and sounds and to establish the mathematical foundation of the maximum likelihood method.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sumio Watanabe: "Algebraic analysis for singular statistical estimation"Lecture Notes on Computer Science. 1720. 39-50 (1999)
Sumio Watanabe:“奇异统计估计的代数分析”计算机科学讲义。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
渡邊澄夫: "Inequalities of Generalization Errors for Layered Neural Networks in Bayesian Learning" Proceedings of Fifth International Conference on Neural Information Processing. 1巻. 59-62 (1998)
Sumio Watanabe:“贝叶斯学习中分层神经网络的泛化误差不等式”第五届国际神经信息处理会议论文集第 1 卷 59-62(1998 年)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
S. Watanabe: "Algebraic analysis for neural network learning"Proc. of IEEE Systems, Man Cybernetics. (1999)
S. Watanabe:“神经网络学习的代数分析”Proc。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Sumio Watanabe: "Algebraic analysis for non-regular learning machines"Advances in Neural Information Processing Systems. 12巻. 356-362 (2000)
Sumio Watanabe:“非常规学习机的代数分析”神经信息处理系统的进展,第 12 卷,356-362 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
渡邊澄夫: "代数解析に基づく特異点を持つモデルの学習理論" 電子情報通信学会技術報告. NC98-64. 73-80 (1998)
Sumio Watanabe:“基于代数分析的奇点模型学习理论”IEICE 技术报告 73-80 (1998)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
WATANABE Sumio其他文献
WATANABE Sumio的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('WATANABE Sumio', 18)}}的其他基金
Central role of autophagy in the pathogenesis of gastrointestinal and hepatic diseases.
自噬在胃肠道和肝脏疾病发病机制中的核心作用。
- 批准号:
21390234 - 财政年份:2009
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Establishment of Information Physics based on algebraic geometry
基于代数几何的信息物理学的建立
- 批准号:
18079007 - 财政年份:2006
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas
Role of lipid and oxidative stress on carcinogenesis in the digestive system
脂质和氧化应激在消化系统癌发生中的作用
- 批准号:
18390213 - 财政年份:2006
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Establishment of Algebraic Geometrical Methods in Statistical Learning Theory
统计学习理论中代数几何方法的建立
- 批准号:
15500130 - 财政年份:2003
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of anima models of inflammatory bowel disease and therapeutics application for inflammatory bowel disease
炎症性肠病动物模型分析及治疗应用
- 批准号:
15590617 - 财政年份:2003
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Mathematical foundation of Singular Learning Machines based on Algebraic Geometry and Analysis
基于代数几何与分析的奇异学习机数学基础
- 批准号:
12680370 - 财政年份:2000
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Biological modulation of the epithelial-mesenchymal interaction in gut wound repair process.
肠道伤口修复过程中上皮间质相互作用的生物调节。
- 批准号:
10670503 - 财政年份:1998
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigation of the bile formation in the liver : basic analysis for transplantation
肝脏胆汁形成的研究:移植的基础分析
- 批准号:
04670443 - 财政年份:1992
- 资助金额:
$ 1.34万 - 项目类别:
Grant-in-Aid for General Scientific Research (C)
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 1.34万 - 项目类别:
Research Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
- 批准号:
2333881 - 财政年份:2024
- 资助金额:
$ 1.34万 - 项目类别:
Standard Grant
Collaborative Research: Spintronics Enabled Stochastic Spiking Neural Networks with Temporal Information Encoding
合作研究:自旋电子学支持具有时间信息编码的随机尖峰神经网络
- 批准号:
2333882 - 财政年份:2024
- 资助金额:
$ 1.34万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 1.34万 - 项目类别:
Standard Grant
SkyANN: Skyrmionic Artificial Neural Networks
SkyANN:Skyrmionic 人工神经网络
- 批准号:
10108371 - 财政年份:2024
- 资助金额:
$ 1.34万 - 项目类别:
EU-Funded
CAREER: Rethinking Spiking Neural Networks from a Dynamical System Perspective
职业:从动态系统的角度重新思考尖峰神经网络
- 批准号:
2337646 - 财政年份:2024
- 资助金额:
$ 1.34万 - 项目类别:
Continuing Grant
RII Track-4:@NASA: Automating Character Extraction for Taxonomic Species Descriptions Using Neural Networks, Transformer, and Computer Vision Signal Processing Architectures
RII Track-4:@NASA:使用神经网络、变压器和计算机视觉信号处理架构自动提取分类物种描述的字符
- 批准号:
2327168 - 财政年份:2024
- 资助金额:
$ 1.34万 - 项目类别:
Standard Grant
Neural Networks for Stationary and Evolutionary Variational Problems
用于稳态和进化变分问题的神经网络
- 批准号:
2424801 - 财政年份:2024
- 资助金额:
$ 1.34万 - 项目类别:
Continuing Grant
Organic optoelectronic neural networks
有机光电神经网络
- 批准号:
EP/Y020596/1 - 财政年份:2024
- 资助金额:
$ 1.34万 - 项目类别:
Research Grant
Inferring the evolution of functional connectivity over learning in large-scale neural recordings using low-tensor-rank recurrent neural networks
使用低张量秩递归神经网络推断大规模神经记录中功能连接学习的演变
- 批准号:
BB/Y513957/1 - 财政年份:2024
- 资助金额:
$ 1.34万 - 项目类别:
Research Grant