Modelling climate change impacts on yield and quality of crops based on leaf photosynthesis with acclimation to elevated CO2

基于叶子光合作用和适应二氧化碳浓度升高来模拟气候变化对作物产量和质量的影响

基本信息

项目摘要

Predicted changes in average values of climate factors (increased atmospheric CO2 concentration, increased temperature, altered precipitation patterns) and predicted changes in climatic variability (frequencies, duration and degree of extremes such as heat and frost periods, droughts, floods and storms) will impact on the yield and quality of agricultural crops. Whereas effects of many of these climatic factors on primary production of agricultural crops have been investigated, little is known about the impact on the chemical composition of plant biomass. Even less is known about how to model and simulate climatic effects on the plant internal transport and transformation processes of chemicals (i.e. macro- and micro-nutrients, sugars, starch, phenolics) that determine crop quality parameters (e.g. carbon to nitrogen (C/N) ratio of grains). Such process knowledge is necessary to predict the quality of future crop yields. The project P5, therefore, will develop and test a new crop growth model based on improved sub-models of leaf photosynthesis and resource allocation dynamics. The model focus will be on the acclimation of photosynthesis to elevated CO2 concentrations which leads inter alia to lower leaf N contents and higher C/N ratios of grains. The new sub-models will extend the crop models CERES, SPASS, SUCROS and GECROS that are part of the agro-ecosystem model Expert-N.
气候因素平均值的预测变化(大气CO2浓度增加、温度升高、降水模式改变)和气候变异性的预测变化(酷热期和霜冻期、干旱、洪水和风暴等极端事件的频率、持续时间和程度)将影响农作物的产量和质量。虽然许多这些气候因素对农作物初级生产的影响已经调查,很少有人知道的影响植物生物量的化学成分。对于如何模拟和模拟气候对植物内部化学品(即宏量和微量营养素、糖、淀粉、酚类物质)的运输和转化过程的影响,所知更少,这些化学品决定作物质量参数(例如谷物的碳氮比)。这种过程知识对于预测未来作物产量的质量是必要的。因此,项目P5将在改进的叶片光合作用和资源分配动态子模型的基础上开发和测试新的作物生长模型。该模型的重点将是光合作用的驯化,以提高CO2浓度,从而导致除其他外,降低叶片氮含量和较高的C/N比的谷物。新的子模型将扩展作为农业生态系统模型Expert-N一部分的CERES、SPASS、SUCROS和GECROS作物模型。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Professor Dr. Eckart Priesack其他文献

Professor Dr. Eckart Priesack的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Professor Dr. Eckart Priesack', 18)}}的其他基金

Modelling climate change impacts on crop growth and yield quality based on explicit simulation of plant internal transport processes
基于植物内部运输过程的显式模拟,模拟气候变化对作物生长和产量质量的影响
  • 批准号:
    200800389
  • 财政年份:
    2012
  • 资助金额:
    --
  • 项目类别:
    Research Units

相似国自然基金

发展/减排路径(SSPs/RCPs)下中国未来人口迁移与集聚时空演变及其影响
  • 批准号:
    19ZR1415200
  • 批准年份:
    2019
  • 资助金额:
    0.0 万元
  • 项目类别:
    省市级项目
红树林生态系统对气候异常变化的响应与适应
  • 批准号:
    41176101
  • 批准年份:
    2011
  • 资助金额:
    75.0 万元
  • 项目类别:
    面上项目

相似海外基金

Hybrid AI and multiscale physical modelling for optimal urban decarbonisation combating climate change
混合人工智能和多尺度物理建模,实现应对气候变化的最佳城市脱碳
  • 批准号:
    EP/X029093/1
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Water IMPACT: Water emissions forecasting tool to Introduce the Modelling Potential of water quality Actions to reach Climate-change Targets
水影响:水排放预测工具,介绍水质建模潜力 实现气候变化目标的行动
  • 批准号:
    10103499
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Interpretable Machine Learning Modelling of Future Extreme Floods under Climate Change
气候变化下未来极端洪水的可解释机器学习模型
  • 批准号:
    2889015
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Modelling the Impacts of Climate Change on Mosquito-Borne Diseases
模拟气候变化对蚊媒疾病的影响
  • 批准号:
    2888319
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
ENHANCE: Exploring how climate change affects coastal cliff recession: modelling and forecasting
加强:探索气候变化如何影响沿海悬崖衰退:建模和预测
  • 批准号:
    EP/Y02754X/1
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Fellowship
Community Distribution Modelling: Predicting how UK forest communities will respond to climate change.
社区分布模型:预测英国森林社区将如何应对气候变化。
  • 批准号:
    2843343
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Studentship
Improving MOdelling approaches to assess climate change-related THresholds and Ecological Range SHIfts in the Earth's Peatland ecosystems (MOTHERSHIP)
改进建模方法以评估地球泥炭地生态系统中与气候变化相关的阈值和生态范围变化(MOTHERSHIP)
  • 批准号:
    NE/V018299/1
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Improving MOdelling approaches to assess climate change-related THresholds and Ecological Range SHIfts in the Earth's Peatland ecosystems (MOTHERSHIP)
改进建模方法以评估地球泥炭地生态系统中与气候变化相关的阈值和生态范围变化(MOTHERSHIP)
  • 批准号:
    NE/V018396/1
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Improving MOdelling approaches to assess climate change-related THresholds and Ecological Range SHIfts in the Earth's Peatland ecosystems (MOTHERSHIP)
改进建模方法以评估地球泥炭地生态系统中与气候变化相关的阈值和生态范围变化(MOTHERSHIP)
  • 批准号:
    NE/V01840X/1
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Pan-Arctic System Modelling (PASM) for detection and early warning of climate change impacts
用于气候变化影响检测和预警的泛北极系统建模 (PASM)
  • 批准号:
    RGPIN-2022-03286
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了