Magnetism of Site Random Model - Coexistence of Ferromagnetism and Antiferromagnetism -
站点随机模型的磁性 - 铁磁性和反铁磁性的共存 -
基本信息
- 批准号:09640452
- 负责人:
- 金额:$ 0.7万
- 依托单位:
- 依托单位国家:日本
- 项目类别:Grant-in-Aid for Scientific Research (C)
- 财政年份:1997
- 资助国家:日本
- 起止时间:1997 至 1999
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
1. Low Temperature Phase of Spin GlassesWe have proposed a new method for evaluating the defect energy of spin glass models on finite lattices. Using the method, we have reexamined the stability of the spin glass phase of two models, the Ising model in two dimensions and the Heisenberg model in three dimensions. For both the models, the defect energy increases with the size of the lattice, suggesting the occurrence of a finite temperature phase transition. These results disprove the previous idea that the spin glass phase is realized only in the Ising model in three dimensions.2. New Simulation AlgorithmWe have developed two simulation methods, a cluster heat bath (CHB) method and a discrete update Monte Carlo method. The former method is a hybridized one of an analytic method and a stochastic method, and very effective for studying complex systems. The latter method is one for systems with long-range interactions and used for studying the spin structure of mesoscopic systems.3. Spin Structure of Mesoscopic Ultrathin Magnetic FilmsWe have studied magnetic properties of micron- and submicron-scale ultrathin ferromagnetic films with uniaxial anisotropy using a discrete update Monte Carlo method. We have found that those films exhibits different magnetic properties depending on their lattice size. In small lattices, the films exhibit properties similar to those of a usual ferromagnet. In moderate lattices, the specific heat exhibits a double peak and the magnetization increases abruptly around the lower peak temperature. In large lattices, the magnetization does not increase but the specific heat still exhibits a double peak.
1.自旋玻璃的低温相我们提出了一种计算有限晶格上自旋玻璃模型缺陷能的新方法。利用这种方法,我们重新研究了两个模型的自旋玻璃相的稳定性,即二维的伊辛模型和三维的海森堡模型。对于这两种模型,缺陷能量随着晶格的尺寸而增加,表明发生有限温度相变。这些结果反驳了先前认为自旋玻璃相只在三维Ising模型中实现的观点.新的模拟方法我们已经开发了两种模拟方法,一个集群热浴(CHB)方法和离散更新蒙特卡罗方法。前一种方法是解析方法和随机方法的混合,对于研究复杂系统是非常有效的。后一种方法是针对具有长程相互作用的系统的方法,用于研究介观系统的自旋结构。3.介观超薄磁性薄膜的自旋结构我们用离散更新蒙特卡罗方法研究了具有单轴各向异性的微米和亚微米尺度铁磁薄膜的磁性。我们已经发现,这些薄膜表现出不同的磁性取决于它们的晶格尺寸。在小晶格中,薄膜表现出与普通铁磁体相似的性质。在中等晶格中,比热呈现双峰,磁化强度在较低的峰值温度附近突然增加。在大晶格中,磁化强度不增加,但比热仍呈现双峰。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A.Sato,F.Matsubara: "Equilibrium properties of an axial next-nearest-neighbor Ising model in two dimensions"Physical Review B. 60・14. 10316-10324 (1999)
A.Sato、F.Matsubara:“二维轴向次近邻伊辛模型的平衡特性”物理评论 B. 60・14 (1999)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
O.Koseki,F.Matsubara: "Monte Carlo Simulation of Magnetic Ordering of Quasi-One Dimensional Ising Antiferromagnets C_SO_OB_r_3 and C_SC_OCl_3"Journal of Physical society of Japan. (印刷中). (2000)
O. Koseki、F. Matsubara:“准一维 Ising 反铁磁体 C_SO_OB_r_3 和 C_SC_OCl_3 磁排序的蒙特卡罗模拟”日本物理学会杂志(2000 年出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Makoto Ohshima: "Inpurity Effect on Magnetic Ordering of Quasi-One Dimensional Ising Antiferro Magnets CsCoCl_3 and CsCoBr_3" Journal of the Physical Society of Japan. 67・3. 984-985 (1998)
Makoto Ohshima:“杂质对准一维伊辛反铁磁体 CsCoCl_3 和 CsCoBr_3 磁有序的影响”,日本物理学会杂志 67・3(1998 年)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
J.Sasaki,F.Matsubara: "Magnetic Properties of Mesoscopic Ultrathin Magnetic Films with Uniaxial Anisotropy"Journal of Applied Physics. (印刷中). (2000)
J. Sasaki、F. Matsubara:“具有单轴各向异性的介观超薄磁性薄膜的磁性”应用物理学杂志(2000 年出版)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A. Sato and F. Matsubara: "Equilibrium properties of an axial next-nearest-neighbor Ising model in two dimensions"Physical Review B. Vol. 60, No. 14. 10316-10324 (1999)
A. Sato 和 F. Matsubara:“二维轴向次近邻伊辛模型的平衡特性”《物理评论 B》卷。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
MATSUBARA Fumitaka其他文献
MATSUBARA Fumitaka的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('MATSUBARA Fumitaka', 18)}}的其他基金
Magnetic Dipolar Interactions and Reentrant Spin-Glass Transition
磁偶极相互作用和重入自旋玻璃转变
- 批准号:
16540335 - 财政年份:2004
- 资助金额:
$ 0.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Structure of Low-Temperature Phase of a Heisenberg Spin-Glass
海森堡自旋玻璃低温相的结构
- 批准号:
14540349 - 财政年份:2002
- 资助金额:
$ 0.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
HMCSD Simulation on Metaric Spin-Glass Alloys
Metaric 旋转玻璃合金的 HMCSD 模拟
- 批准号:
07640499 - 财政年份:1995
- 资助金额:
$ 0.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
相似海外基金
Innovating the foundation of Ising spin glass theory by an approach from discrete mathematics
通过离散数学方法创新伊辛自旋玻璃理论的基础
- 批准号:
23K03192 - 财政年份:2023
- 资助金额:
$ 0.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Kardar-Parisi-Zhang Universality Class, Integrable Differential Equations, and Spin Glass
Kardar-Parisi-Zhang 普适类、可积微分方程和自旋玻璃
- 批准号:
2246790 - 财政年份:2023
- 资助金额:
$ 0.7万 - 项目类别:
Standard Grant
Spin Glass Systems as a Lossy Compression
作为有损压缩的旋转玻璃系统
- 批准号:
21K12046 - 财政年份:2021
- 资助金额:
$ 0.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Random Matrices, Spin Glass, and Interacting Particle Systems
随机矩阵、自旋玻璃和相互作用粒子系统
- 批准号:
1954790 - 财政年份:2020
- 资助金额:
$ 0.7万 - 项目类别:
Standard Grant
Formation of single-crystal Si spin glass with a single W atom as a magnetic dopant and elucidation of its magnetic properties
以单个W原子作为磁性掺杂剂的单晶硅自旋玻璃的形成及其磁性能的阐明
- 批准号:
20H02560 - 财政年份:2020
- 资助金额:
$ 0.7万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Optimal control theory solves spin glass models with transverse field
最优控制理论求解横向场自旋玻璃模型
- 批准号:
19K23418 - 财政年份:2019
- 资助金额:
$ 0.7万 - 项目类别:
Grant-in-Aid for Research Activity Start-up
Structure of the Gibbs distribution in spin glass models with applications
自旋玻璃模型中吉布斯分布的结构及其应用
- 批准号:
RGPIN-2015-04637 - 财政年份:2019
- 资助金额:
$ 0.7万 - 项目类别:
Discovery Grants Program - Individual
Random Matrices, Statistical Applications, and Spin Glass Dynamics
随机矩阵、统计应用和自旋玻璃动力学
- 批准号:
1855509 - 财政年份:2019
- 资助金额:
$ 0.7万 - 项目类别:
Continuing Grant
Structure of the Gibbs distribution in spin glass models with applications
自旋玻璃模型中吉布斯分布的结构及其应用
- 批准号:
RGPIN-2015-04637 - 财政年份:2018
- 资助金额:
$ 0.7万 - 项目类别:
Discovery Grants Program - Individual
Preparation of super spin glass magnetic nanoparticles and biomedical application for hyperthermia therapy
超自旋玻璃磁性纳米颗粒的制备及其热疗生物医学应用
- 批准号:
17H02762 - 财政年份:2017
- 资助金额:
$ 0.7万 - 项目类别:
Grant-in-Aid for Scientific Research (B)














{{item.name}}会员




