Complexity of the objects of complex analysis and holomorphic mapping problems
复分析对象的复杂性与全纯映射问题
基本信息
- 批准号:0072197
- 负责人:
- 金额:$ 26.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2000
- 资助国家:美国
- 起止时间:2000-07-01 至 2004-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
AbstractAward: DMS-0072197Principal Investigator: Steven R. BellProf. Bell has shown that the Bergman, Szego, and Poisson kernelsassociated to a finitely connected region in the plane areelementary combinations of only three, and sometimes even two,analytic functions of one complex variable related to geometricconstructions associated to the domain. Bell will study deeperquestions about complexity in potential theory posed by hisrecent findings and he will extend these results to finiteRiemann surfaces. Bell has also formulated a unique continuationproperty for the inhomogeneous Cauchy-Riemann equations that hehas shown yields information about the behavior of holomorphicmappings between domains in complex space. He will attempt toverify the property on important classes of domains such as thestrictly pseudoconvex domains.The mathematical objects of potential theory and conformalmapping are ubiquitous in Science, Mathematics, and Engineering.They carry encoded within them a vast amount of information aboutgeometric properties of regions in the plane. Although theseobjects are familiar and well studied, they continue to be asource of interesting and applicable new mathematics. ProfessorBell will express the classical objects of potential theoryassociated to a two dimensional region with holes in terms ofmuch simpler analytic objects. These results will give rise tonew and practical methods for understanding the solutions to manyclassical problems in differential equations, conformal mapping,and potential theory that should be of interest to scientists andengineers. Bell will explore applications of his ideas to morecomplicated constructions in the subject and he and his studentswill test the efficacy of the numerical methods stemming from thework. Because humans best perceive higher dimensional objects bytaking a series of two dimensional slices, the tools developed byBell could find many applications.
摘要奖:DMS-0072197主要研究者:Steven R.贝尔教授贝尔已经证明,与平面中有限连通区域相关的伯格曼核、塞戈核和泊松核是与该域相关的几何结构相关的一个复变量的仅三个、有时甚至两个解析函数的初等组合。 贝尔将研究更深层次的问题复杂性潜在的理论所提出的他最近的发现,他将这些结果扩展到有限黎曼曲面。 贝尔还制定了一个独特的连续性质的非齐次柯西-黎曼方程,他已经表明,产量的行为信息holomorphicmapping域之间的复空间。 他将尝试验证重要的域类的属性,如严格pseudoconvex domains.势理论和conformalmapping的数学对象是无处不在的科学,数学和工程.他们携带编码在他们大量的信息aboutgeometric属性的区域在平面上. 虽然这些对象是熟悉的和良好的研究,他们仍然是一个有趣的和适用的新数学的集合。 贝尔教授将用简单得多的分析对象来表示与二维空穴区域相关的势能理论的经典对象。 这些结果将产生一个新的和实用的方法来理解解微分方程,保角映射和潜在的理论,应该感兴趣的科学家和工程师的许多经典问题。 贝尔将探索应用他的想法,以更复杂的结构在主题,他和他的学生将测试的有效性,数值方法源于工作。 由于人类通过一系列二维切片来最好地感知更高维度的物体,贝尔开发的工具可以找到许多应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Steven Bell其他文献
Mutant p53 induces SH3BGRL expression to promote cell engulfment
突变型 p53 诱导 SH3BGRL 表达以促进细胞吞噬
- DOI:
10.1038/s41420-025-02582-x - 发表时间:
2025-07-01 - 期刊:
- 影响因子:7.000
- 作者:
Lobsang Dolma;Mary I. Patterson;Antonia Banyard;Callum Hall;Steven Bell;Wolfgang Breitwieser;Sudhakar Sahoo;John Weightman;Maria Pazos Gil;Garry Ashton;Caron Behan;Nicola Fullard;Lewis D. Williams;Patricia AJ. Muller - 通讯作者:
Patricia AJ. Muller
The write algorithm: promoting responsible artificial intelligence usage and accountability in academic writing
- DOI:
10.1186/s12916-023-03039-7 - 发表时间:
2023-09-04 - 期刊:
- 影响因子:8.300
- 作者:
Steven Bell - 通讯作者:
Steven Bell
Nucleus of fairness: epigenetic ageing, social determinants of health and the imperative for proactive preventive measures
公平的核心:表观遗传衰老、健康的社会决定因素以及积极预防措施的必要性
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:6.3
- 作者:
Steven Bell - 通讯作者:
Steven Bell
F96. ALCOHOL USE AND DEMENTIA IN DIVERSE POPULATIONS
F96. 不同人群中的酒精使用与痴呆
- DOI:
10.1016/j.euroneuro.2024.08.507 - 发表时间:
2024-10-01 - 期刊:
- 影响因子:6.700
- 作者:
Anya Topiwala;Daniel Levey;Hang Zhou;Joseph Deak;Keyrun Adhikari;Klaus P. Ebmeier;Steven Bell;Stephen Burgess;Thomas E. Nichols;Michael Gaziano;Murray Stein;Joel Gelernter - 通讯作者:
Joel Gelernter
Using webcasts as a teaching tool
- DOI:
10.1007/bf02763506 - 发表时间:
2003-07-01 - 期刊:
- 影响因子:3.800
- 作者:
Steven Bell - 通讯作者:
Steven Bell
Steven Bell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Steven Bell', 18)}}的其他基金
Building the Queen's University of Belfast AMR Network (QUBAN)
建设贝尔法斯特女王大学 AMR 网络 (QUBAN)
- 批准号:
EP/M027473/1 - 财政年份:2015
- 资助金额:
$ 26.13万 - 项目类别:
Research Grant
Personalized fitting and evaluation of hearing aids with EEG responses
通过脑电图反应对助听器进行个性化验配和评估
- 批准号:
EP/M026728/1 - 财政年份:2015
- 资助金额:
$ 26.13万 - 项目类别:
Research Grant
New approaches to potential theory and conformal mapping
势论和共形映射的新方法
- 批准号:
1001701 - 财政年份:2010
- 资助金额:
$ 26.13万 - 项目类别:
Standard Grant
Surface-active Gels as Next-generation Chemical Sensors
表面活性凝胶作为下一代化学传感器
- 批准号:
EP/E028543/1 - 财政年份:2007
- 资助金额:
$ 26.13万 - 项目类别:
Research Grant
Developing a clinical indicator of depth of anaesthesia based on auditory evoked potentials
基于听觉诱发电位开发麻醉深度的临床指标
- 批准号:
EP/D505593/1 - 财政年份:2006
- 资助金额:
$ 26.13万 - 项目类别:
Research Grant
Mathematical Sciences: Partial Differential Equations and Complex Analysis
数学科学:偏微分方程和复分析
- 批准号:
9623098 - 财政年份:1996
- 资助金额:
$ 26.13万 - 项目类别:
Continuing Grant
Mathematical Sciences: Partial Differential Equations in Complex Analysis
数学科学:复分析中的偏微分方程
- 批准号:
9302513 - 财政年份:1993
- 资助金额:
$ 26.13万 - 项目类别:
Continuing Grant
Mathematical Sciences: Mapping Problems in Complex Analysis
数学科学:复分析中的映射问题
- 批准号:
8922810 - 财政年份:1990
- 资助金额:
$ 26.13万 - 项目类别:
Continuing Grant
Mathematical Sciences: Holomorphic Mappings in Several Complex Variables
数学科学:多个复变量的全纯映射
- 批准号:
8619858 - 财政年份:1987
- 资助金额:
$ 26.13万 - 项目类别:
Continuing Grant
相似海外基金
Modeling Complex Functional Data and Random Objects in Metric Spaces
在度量空间中对复杂函数数据和随机对象进行建模
- 批准号:
2311035 - 财政年份:2023
- 资助金额:
$ 26.13万 - 项目类别:
Continuing Grant
Robust and nonparametric methods for complex data objects
适用于复杂数据对象的稳健非参数方法
- 批准号:
RGPIN-2019-04610 - 财政年份:2022
- 资助金额:
$ 26.13万 - 项目类别:
Discovery Grants Program - Individual
Capital investment in equipment for measuring complex objects
用于测量复杂物体的设备的资本投资
- 批准号:
ST/X004945/1 - 财政年份:2022
- 资助金额:
$ 26.13万 - 项目类别:
Research Grant
Robust and nonparametric methods for complex data objects
适用于复杂数据对象的稳健非参数方法
- 批准号:
RGPIN-2019-04610 - 财政年份:2021
- 资助金额:
$ 26.13万 - 项目类别:
Discovery Grants Program - Individual
Memory Formation for Complex Objects: Is it a Visual or Verbal Mechanism?
复杂物体的记忆形成:是视觉机制还是言语机制?
- 批准号:
565875-2021 - 财政年份:2021
- 资助金额:
$ 26.13万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Measure of Heterogeneity for Complex Data Objects
复杂数据对象的异构性度量
- 批准号:
2112711 - 财政年份:2021
- 资助金额:
$ 26.13万 - 项目类别:
Standard Grant
A Framework for Understanding How Humans Perceive the Depth of Moving Objects
理解人类如何感知移动物体深度的框架
- 批准号:
9906582 - 财政年份:2020
- 资助金额:
$ 26.13万 - 项目类别:
A Framework for Understanding How Humans Perceive the Depth of Moving Objects
理解人类如何感知移动物体深度的框架
- 批准号:
10557144 - 财政年份:2020
- 资助金额:
$ 26.13万 - 项目类别:
Robust and nonparametric methods for complex data objects
适用于复杂数据对象的稳健非参数方法
- 批准号:
RGPIN-2019-04610 - 财政年份:2020
- 资助金额:
$ 26.13万 - 项目类别:
Discovery Grants Program - Individual
Formal Privacy for Complex Data Objects
复杂数据对象的正式隐私
- 批准号:
1853209 - 财政年份:2019
- 资助金额:
$ 26.13万 - 项目类别:
Standard Grant