Feasibility of an Early Warning Tool for Locust Outbreaks in East Africa
东非蝗灾预警工具的可行性
基本信息
- 批准号:10020115
- 负责人:
- 金额:$ 2.59万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Collaborative R&D
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Since 2019, countries in East Africa have been facing the biggest locust outbreaks in history, which damaged thousands of kilometres of cropland and drastically reduced crop yields. Such pest and disease outbreaks are threatening food security and livelihoods of millions of people. African small-scale farmers are particularly vulnerable as they are largely dependent on crop production for livelihoods and food.Besides, the intensity and frequency of such ecological shocks are projected to increase with climate change, resulting in an upsurge in agricultural losses. This will have severe consequences for food security and nutritional health for not only the poorest in Africa but also for people across the world.Crop pest and disease outbreaks including Locust occurrences can be predicted with the help of the existing earth observation data and intelligent models. We, at Dtime, plan to develop a mobile and web-based Early-Warning Tool that will provide warning of crop pest and disease outbreaks using big data and cutting-edge machine learning algorithms, in addition to a deep understanding of crop pest/disease distribution and ecology. This tool will inform farmers, agriculture officers, non-government organisations such as FAO, government bodies and other stakeholders in the value chain about the probability of locust emergence and arrival, movement patterns, and outbreak at local-scales (1-10km) and landscape scales (100-500km). Farmers and other stakeholders will then be able to anticipate and adapt in order to prevent crop losses. The tool will help FAO and other organisations manage locusts much more effectively resulting in reduced use of pesticides, hence minimising the costs of pest control and environmental impact.Our team is developing a range of intelligent forecast models using algorithms such as Convolutional Neural Networks and Random Forest Classification. At this stage, we focus on building models for East Africa. We will use the locust models and data pipelines to model other devastating pests (e.g., Fall armyworm) and diseases (e.g., Cassava mosaic disease) in east Africa and across the world.We will engage with the insurance sector, value chain stakeholders, commercial farmers and advertisements to fund the tool, as we want this tool to be entirely free for small-scale farmers. We also plan to look at funding options from governments and regional organisations such as the FAO as the tool will significantly reduce the costs of pest and disease control by the FAO and World bank which was over $ 6 million for Locust control in 2020\.
自2019年以来,东非国家一直面临着历史上最大规模的蝗灾,破坏了数千公里的农田,使作物产量大幅下降。这种虫害和疾病的暴发正在威胁着数百万人的粮食安全和生计。非洲小农尤其脆弱,因为他们的生计和食物在很大程度上依赖于农作物生产。此外,这种生态冲击的强度和频率预计将随着气候变化而增加,导致农业损失激增。这不仅对非洲最贫穷的人,而且对世界各地的人民,都将对粮食安全和营养健康造成严重后果。农作物病虫害和疾病的爆发,包括蝗虫的发生,可以借助现有的地球观测数据和智能模型进行预测。我们计划在Dtime开发一个基于移动和网络的预警工具,除了深入了解作物病虫害/疾病分布和生态外,还将使用大数据和尖端机器学习算法提供作物病虫害爆发的警告。这一工具将向农民、农业官员、粮农组织等非政府组织、政府机构和价值链上的其他利益攸关方通报蝗虫发生和到达的可能性、移动模式以及局部规模(1-10公里)和景观规模(100-500公里)的暴发。农民和其他利益攸关方将能够预测和适应,以防止作物损失。该工具将帮助粮农组织和其他组织更有效地管理蝗虫,从而减少杀虫剂的使用,从而将虫害控制和环境影响的成本降至最低。我们的团队正在使用卷积神经网络和随机森林分类等算法开发一系列智能预测模型。在这个阶段,我们专注于为东非建立模型。我们将使用蝗虫模型和数据管道来模拟东非和世界各地的其他毁灭性害虫(如秋粘虫)和疾病(如木薯花叶病)。我们将与保险部门、价值链利益相关者、商业农民和广告合作,为该工具提供资金,因为我们希望该工具对小规模农民完全免费。我们还计划研究来自各国政府和区域组织(如粮农组织)的资金选择,因为该工具将大大降低粮农组织和世界银行控制虫害和疾病的成本。2020年,世界银行用于蝗虫控制的资金超过600万美元。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
吉治仁志 他: "トランスジェニックマウスによるTIMP-1の線維化促進機序"最新医学. 55. 1781-1787 (2000)
Hitoshi Yoshiji 等:“转基因小鼠中 TIMP-1 的促纤维化机制”现代医学 55. 1781-1787 (2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
LiDAR Implementations for Autonomous Vehicle Applications
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
吉治仁志 他: "イラスト医学&サイエンスシリーズ血管の分子医学"羊土社(渋谷正史編). 125 (2000)
Hitoshi Yoshiji 等人:“血管医学与科学系列分子医学图解”Yodosha(涉谷正志编辑)125(2000)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Effect of manidipine hydrochloride,a calcium antagonist,on isoproterenol-induced left ventricular hypertrophy: "Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,K.,Teragaki,M.,Iwao,H.and Yoshikawa,J." Jpn Circ J. 62(1). 47-52 (1998)
钙拮抗剂盐酸马尼地平对异丙肾上腺素引起的左心室肥厚的影响:“Yoshiyama,M.,Takeuchi,K.,Kim,S.,Hanatani,A.,Omura,T.,Toda,I.,Akioka,
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
$ 2.59万 - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
$ 2.59万 - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
$ 2.59万 - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
$ 2.59万 - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
$ 2.59万 - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
$ 2.59万 - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
$ 2.59万 - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
$ 2.59万 - 项目类别:
Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
- 批准号:
2879865 - 财政年份:2027
- 资助金额:
$ 2.59万 - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
$ 2.59万 - 项目类别:
Studentship
相似国自然基金
玉米Edk1(Early delayed kernel 1)基因的克隆及其在胚乳早期发育中的功能研究
- 批准号:31871625
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Early warning financial risk system to help Midlands-based manufacturing SMEs navigate economic turmoil
金融风险预警系统帮助中部制造业中小企业应对经济动荡
- 批准号:
10081620 - 财政年份:2024
- 资助金额:
$ 2.59万 - 项目类别:
Collaborative R&D
People-Centered Tsunami early Warning for the INdian coastlines (PCTWIN)
印度海岸线以人为本的海啸预警 (PCTWIN)
- 批准号:
NE/Z503496/1 - 财政年份:2024
- 资助金额:
$ 2.59万 - 项目类别:
Research Grant
SBIR Phase II: Remote IoT Monitoring Network for Early Warning and Measurement of Structural Movements
SBIR 第二阶段:用于结构运动预警和测量的远程物联网监测网络
- 批准号:
2337470 - 财政年份:2024
- 资助金额:
$ 2.59万 - 项目类别:
Cooperative Agreement
EARLYWATER - An integrated early warning system to control emerging pollutants and pathogens in reclaimed water
EARLYWATER - 控制再生水中新出现的污染物和病原体的综合预警系统
- 批准号:
EP/X02380X/2 - 财政年份:2024
- 资助金额:
$ 2.59万 - 项目类别:
Fellowship
NIMBLE - an artificial intelligence-based early warning system for bladder cancer
NIMBLE——基于人工智能的膀胱癌早期预警系统
- 批准号:
486937 - 财政年份:2023
- 资助金额:
$ 2.59万 - 项目类别:
Miscellaneous Programs
D-ISN/Collaborative Research: Early Warning Systems for Emerging Epidemics of Illicit Substances
D-ISN/合作研究:非法物质新出现流行病的早期预警系统
- 批准号:
2240409 - 财政年份:2023
- 资助金额:
$ 2.59万 - 项目类别:
Standard Grant
Tsunami early warning method based on the real-time estimation of coseismic sea-bottom displacements
基于同震海底位移实时估计的海啸预警方法
- 批准号:
22KJ0049 - 财政年份:2023
- 资助金额:
$ 2.59万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Collaborative Research: A Physics-Informed Flood Early Warning System for Agricultural Watersheds with Explainable Deep Learning and Process-Based Modeling
合作研究:基于物理的农业流域洪水预警系统,具有可解释的深度学习和基于过程的建模
- 批准号:
2243776 - 财政年份:2023
- 资助金额:
$ 2.59万 - 项目类别:
Standard Grant
Collaborative Research: A Physics-Informed Flood Early Warning System for Agricultural Watersheds with Explainable Deep Learning and Process-Based Modeling
合作研究:基于物理的农业流域洪水预警系统,具有可解释的深度学习和基于过程的建模
- 批准号:
2243775 - 财政年份:2023
- 资助金额:
$ 2.59万 - 项目类别:
Standard Grant
E4WARNING: ECO-EPIDEMIOLOGICAL INTELLIGENCE FOR EARLY WARNING AND RESPONSE TO MOSQUITO-BORNE DISEASE RISK IN ENDEMIC AND EMERGENCE SETTINGS
E4WARNING:流行病和紧急情况下蚊媒疾病风险预警和应对的生态流行病学情报
- 批准号:
10041696 - 财政年份:2023
- 资助金额:
$ 2.59万 - 项目类别:
EU-Funded