Neural Mapping of the Social Landscape
社会景观的神经映射
基本信息
- 批准号:10154808
- 负责人:
- 金额:$ 4.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-01 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:AffectiveAlgorithmsBehaviorBehavioralBig DataBrainBrain regionCognitiveComplexConceptual DomainDataDecision MakingDiagnosisDimensionsDiseaseEnsureEnvironmentFactor AnalysisFunctional Magnetic Resonance ImagingFunctional disorderFutureGeometryGoalsHealthHippocampal FormationHippocampus (Brain)ImpairmentIndividualLinear ModelsLinkLocationMapsMeasuresMedialMemoryMental disordersMethodsModelingMovementNeurobiologyPatient Self-ReportPhenotypePrefrontal CortexProcessQuestionnairesRoleRole playing therapySamplingSignal TransductionSocial BehaviorSocial FunctioningSocial InteractionSocial PowerStructureSymptomsTestingTimeUnited StatesWorkautism spectrum disorderbasebehavioral studycingulate cortexcognitive neurosciencecomputational neurosciencecomputer gridcomputer studiesdigitalentorhinal cortexflexibilitymultidimensional dataneural correlateneural patterningneuromechanismnovelrelating to nervous systemsimulationsocialsocial cognitionsocial deficitssocial relationshipssocial spacesocial structuretherapeutic candidatetherapeutic targettooltwo-dimensional
项目摘要
PROJECT SUMMARY
Psychiatric disorders that feature social impairment (e.g., Autism Spectrum Disorder) pose a significant
health burden in the United States. Attempts to understand the underlying neurobiology of such social
impairments have largely focused on classical `social brain' networks that include regions such as the medial
prefrontal cortex. However, these disorders also tend to show hippocampal dysfunction – a region not normally
included in descriptions of social brain networks. This prompts the question: are social and hippocampal
dysfunction linked? Social cognitive mapping, whereby social information is organized and stored in the
hippocampal formation to inform flexible social decision-making, is one candidate mechanism that may unify
these seemingly distinct observations. In this proposal, we will use a naturalistic choose-your-own-adventure
task that probes social cognitive mapping processes. Dimensions of social power and affiliation define a `social
space' within which other people are coordinates and evolving relationships are trajectories. Previous work in
our lab showed that hippocampus and posterior cingulate cortex activity tracked trajectories within this space.
Furthermore, the parameter estimates from the hippocampus related to self-reported social function,
suggesting that this neural tracking is relevant to real-world social cognition and behavior. To characterize the
role of social cognitive mapping in both normal and abnormal social cognition, this proposal will use a large,
multidimensional dataset, and cutting-edge approaches to functional magnetic resonance imaging (fMRI). First,
we will leverage data-driven methods on a large and diverse online sample to relate the geometry of behavior
within this two-dimensional social space to the underlying structure of social dysfunction. Second, we will use
ultra-high field (7T) fMRI and state-of-the-art analyses to test for specific neural signatures within the social
space that are predicted by the social cognitive mapping perspective (e.g., a grid-like representation). These
results will further the fields of social cognitive and computational neuroscience, by revealing the behavioral
and neural correlates of evolving relationships and how they relate to social function, and by extending
hippocampal function to abstract, non-spatial domains. Further, this approach will allow the role of cognitive
mapping in social dysfunction to be explored, and may provide candidate therapeutic targets for psychiatric
disorders.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Schafer其他文献
Matthew Schafer的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Schafer', 18)}}的其他基金
相似海外基金
Developing deep learning algorithms for studying infant brain and behavior relationships
开发深度学习算法来研究婴儿大脑和行为关系
- 批准号:
10263607 - 财政年份:2021
- 资助金额:
$ 4.44万 - 项目类别:
Real-time statistical algorithms for controlling neural dynamics and behavior
用于控制神经动力学和行为的实时统计算法
- 批准号:
10001503 - 财政年份:2018
- 资助金额:
$ 4.44万 - 项目类别:
Real-time statistical algorithms for controlling neural dynamics and behavior
用于控制神经动力学和行为的实时统计算法
- 批准号:
9789318 - 财政年份:2018
- 资助金额:
$ 4.44万 - 项目类别:
CCF-BSF: CIF: Small: Identification and Isolation of Malicious Behavior in Multi-Agent Optimization Algorithms
CCF-BSF:CIF:小:多代理优化算法中恶意行为的识别和隔离
- 批准号:
1714672 - 财政年份:2017
- 资助金额:
$ 4.44万 - 项目类别:
Standard Grant
EAGER: Using Learning Algorithms to Morph Product Behavior for Specific Task Contexts and Cognitive Styles of Users
EAGER:使用学习算法针对特定任务环境和用户认知风格来改变产品行为
- 批准号:
1548234 - 财政年份:2015
- 资助金额:
$ 4.44万 - 项目类别:
Standard Grant
CAREER: Human Behavior Assessment from Internet Usage: Foundations, Applications and Algorithms
职业:基于互联网使用的人类行为评估:基础、应用程序和算法
- 批准号:
1559588 - 财政年份:2015
- 资助金额:
$ 4.44万 - 项目类别:
Continuing Grant
CAREER: Human Behavior Assessment from Internet Usage: Foundations, Applications and Algorithms
职业:基于互联网使用的人类行为评估:基础、应用程序和算法
- 批准号:
1254117 - 财政年份:2013
- 资助金额:
$ 4.44万 - 项目类别:
Continuing Grant
Machine learning algorithms for automated analysis of player behavior in next-generation video games
用于自动分析下一代视频游戏中玩家行为的机器学习算法
- 批准号:
396001-2009 - 财政年份:2012
- 资助金额:
$ 4.44万 - 项目类别:
Collaborative Research and Development Grants
Machine learning algorithms for automated analysis of player behavior in next-generation video games
用于自动分析下一代视频游戏中玩家行为的机器学习算法
- 批准号:
396001-2009 - 财政年份:2011
- 资助金额:
$ 4.44万 - 项目类别:
Collaborative Research and Development Grants
Machine learning algorithms for automated analysis of player behavior in next-generation video games
用于自动分析下一代视频游戏中玩家行为的机器学习算法
- 批准号:
396001-2009 - 财政年份:2010
- 资助金额:
$ 4.44万 - 项目类别:
Collaborative Research and Development Grants














{{item.name}}会员




