Neural Mapping of the Social Landscape

社会景观的神经映射

基本信息

项目摘要

PROJECT SUMMARY Psychiatric disorders that feature social impairment (e.g., Autism Spectrum Disorder) pose a significant health burden in the United States. Attempts to understand the underlying neurobiology of such social impairments have largely focused on classical `social brain' networks that include regions such as the medial prefrontal cortex. However, these disorders also tend to show hippocampal dysfunction – a region not normally included in descriptions of social brain networks. This prompts the question: are social and hippocampal dysfunction linked? Social cognitive mapping, whereby social information is organized and stored in the hippocampal formation to inform flexible social decision-making, is one candidate mechanism that may unify these seemingly distinct observations. In this proposal, we will use a naturalistic choose-your-own-adventure task that probes social cognitive mapping processes. Dimensions of social power and affiliation define a `social space' within which other people are coordinates and evolving relationships are trajectories. Previous work in our lab showed that hippocampus and posterior cingulate cortex activity tracked trajectories within this space. Furthermore, the parameter estimates from the hippocampus related to self-reported social function, suggesting that this neural tracking is relevant to real-world social cognition and behavior. To characterize the role of social cognitive mapping in both normal and abnormal social cognition, this proposal will use a large, multidimensional dataset, and cutting-edge approaches to functional magnetic resonance imaging (fMRI). First, we will leverage data-driven methods on a large and diverse online sample to relate the geometry of behavior within this two-dimensional social space to the underlying structure of social dysfunction. Second, we will use ultra-high field (7T) fMRI and state-of-the-art analyses to test for specific neural signatures within the social space that are predicted by the social cognitive mapping perspective (e.g., a grid-like representation). These results will further the fields of social cognitive and computational neuroscience, by revealing the behavioral and neural correlates of evolving relationships and how they relate to social function, and by extending hippocampal function to abstract, non-spatial domains. Further, this approach will allow the role of cognitive mapping in social dysfunction to be explored, and may provide candidate therapeutic targets for psychiatric disorders.
项目摘要 以社交障碍为特征的精神疾病(例如,自闭症谱系障碍(Autism Spectrum Disorder) 美国的健康负担。试图了解这种社会性行为的潜在神经生物学 损伤主要集中在经典的“社会脑”网络,包括诸如内侧 前额皮质然而,这些疾病也往往表现出海马功能障碍-一个区域通常不 包括在社交脑网络的描述中。这就引出了一个问题:社交和海马 功能障碍联系在一起?社会认知映射,社会信息被组织和存储在 海马结构告知灵活的社会决策,是一个候选机制, 这些看似不同的观察。在这个建议中,我们将使用一个自然主义的自我冒险 探索社会认知映射过程的任务。社会权力和从属关系的各个方面界定了一个"社会 在这个空间中,其他人是坐标,不断发展的关系是轨迹。以前的工作 我们的实验表明,海马体和后扣带皮层的活动在这个空间内跟踪轨迹。 此外,海马体的参数估计与自我报告的社会功能有关, 这表明这种神经跟踪与现实世界的社会认知和行为有关。表征 社会认知映射在正常和异常社会认知中的作用,该建议将使用大量, 多维数据集,以及功能性磁共振成像(fMRI)的尖端方法。第一、 我们将利用数据驱动的方法,对大量不同的在线样本进行分析, 在这个二维的社会空间中,社会功能障碍的潜在结构。第二,我们将使用 超高场(7T)功能磁共振成像和最先进的分析,以测试特定的神经签名在社会 由社会认知映射视角预测的空间(例如,类似网格的表示)。这些 结果将进一步社会认知和计算神经科学领域,通过揭示行为, 和神经相关的进化关系,以及它们如何与社会功能,并通过扩展 海马功能抽象,非空间域。此外,这种方法将允许认知的作用, 社会功能障碍的映射有待探索,并可能为精神病患者提供候选治疗靶点。 紊乱

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew Schafer其他文献

Matthew Schafer的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthew Schafer', 18)}}的其他基金

Neural Mapping of the Social Landscape
社会景观的神经映射
  • 批准号:
    10154808
  • 财政年份:
    2021
  • 资助金额:
    $ 4.52万
  • 项目类别:
Neural Mapping of the Social Landscape
社会景观的神经映射
  • 批准号:
    10391316
  • 财政年份:
    2021
  • 资助金额:
    $ 4.52万
  • 项目类别:

相似海外基金

Developing deep learning algorithms for studying infant brain and behavior relationships
开发深度学习算法来研究婴儿大脑和行为关系
  • 批准号:
    10263607
  • 财政年份:
    2021
  • 资助金额:
    $ 4.52万
  • 项目类别:
Real-time statistical algorithms for controlling neural dynamics and behavior
用于控制神经动力学和行为的实时统计算法
  • 批准号:
    10001503
  • 财政年份:
    2018
  • 资助金额:
    $ 4.52万
  • 项目类别:
Real-time statistical algorithms for controlling neural dynamics and behavior
用于控制神经动力学和行为的实时统计算法
  • 批准号:
    9789318
  • 财政年份:
    2018
  • 资助金额:
    $ 4.52万
  • 项目类别:
CCF-BSF: CIF: Small: Identification and Isolation of Malicious Behavior in Multi-Agent Optimization Algorithms
CCF-BSF:CIF:小:多代理优化算法中恶意行为的识别和隔离
  • 批准号:
    1714672
  • 财政年份:
    2017
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Standard Grant
EAGER: Using Learning Algorithms to Morph Product Behavior for Specific Task Contexts and Cognitive Styles of Users
EAGER:使用学习算法针对特定任务环境和用户认知风格来改变产品行为
  • 批准号:
    1548234
  • 财政年份:
    2015
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Standard Grant
CAREER: Human Behavior Assessment from Internet Usage: Foundations, Applications and Algorithms
职业:基于互联网使用的人类行为评估:基础、应用程序和算法
  • 批准号:
    1559588
  • 财政年份:
    2015
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Continuing Grant
CAREER: Human Behavior Assessment from Internet Usage: Foundations, Applications and Algorithms
职业:基于互联网使用的人类行为评估:基础、应用程序和算法
  • 批准号:
    1254117
  • 财政年份:
    2013
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Continuing Grant
Machine learning algorithms for automated analysis of player behavior in next-generation video games
用于自动分析下一代视频游戏中玩家行为的机器学习算法
  • 批准号:
    396001-2009
  • 财政年份:
    2012
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Collaborative Research and Development Grants
Machine learning algorithms for automated analysis of player behavior in next-generation video games
用于自动分析下一代视频游戏中玩家行为的机器学习算法
  • 批准号:
    396001-2009
  • 财政年份:
    2011
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Collaborative Research and Development Grants
Machine learning algorithms for automated analysis of player behavior in next-generation video games
用于自动分析下一代视频游戏中玩家行为的机器学习算法
  • 批准号:
    396001-2009
  • 财政年份:
    2010
  • 资助金额:
    $ 4.52万
  • 项目类别:
    Collaborative Research and Development Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了